
€ \

QFAK-68 User's Guide

The cCInlents cf th j. s manual and the sof tware products i tdescribes are cspyriEhted 1983 by ewerty, trr1co Neitherthe maRual nDr the diskette, or any part thereofr ffiay becopied by any means r+ithout prior written consent
(except fcr the per sonal use of the reg i stered owner) .
Chapter 3 is hased on the " S -C Macro Assembler,o manual
f or the 6562 F,lacro Assembler , whici: is copyr ighted by
S-C Software eorporation. The manual has been enlarged
and updated far 68fi#6 operation for inclusion in this
rnanu a 1 .

The 68fr6fr t"tacro Assemk*1er {3 versions) on the diskette
are suppl ied under 1 icense from, and are copyr ighted by,
*q-C Saf tware Corporati.orl .

Apple is a tradernark of Apple Computer, IRC.

APPLE COMpUTER, INC. r"lAKES NO WARRAN?I ES , EITHER EXpRESS
oR IMpLI ED, REGARDING TFiE ENCLOSfiD COMpUTER SGTTWARE
PACKAGE, ITS MERCHANTABILITY OR I?S TITNESS EOR ANY
PARTICLILAR PURPOSE. YT{E EKTLUSION CF' IMPLIED WARRANTIES
I S NOT PERMITTfiD BY SOME STATAS . THH ABOVE EXCLUS ION
MAY NOT APFLY TO YfiU* THIS WARRANTY PROVIDES YOU WITH
SPECIFIC tEGAt RtrG}iTS- THERE },lAY BE OTHER RIGHTS THAT
YOU },IAY HA\TE W}I ICH VAEY T;"ROM STATE TO STATE .

DOS 3,3 is a copyrighted program of Apple Computer, Inc.Lieensed to QWERTY p INe to tiistr ibute for use onLy incombination with QPAK*68. Apple software shal I not beeopied onto another disketle (except for archivepurpcses) CItr into memory unl-ess as part cf the exeeutionof QPAK-68, When QPAK*68 has completed executicn Apple
sof Lware shal 1 not be used by any other program "

Copyr i gtrt (C) Oc tober , 19I3

:{tE
cE,

__

DISCLAIT,IER OF ALL WARRANTIES AND LIABILITY

Qwerty, Inc. ("ewertytt) rnakes no warranties, eitherexpress or implied, with respect to this documentationor wi th respect to the software descr ibed in th i spublicatioD r its quality, p€rformance r rn€rchantability,or fi tness for any par ticular purpose . ewer ty softwareis sold or licensed "as is". The entire risk is to its
qual ity and performance is with the buyer . Should theprograms prove defective following their purchase r thebuyer (and not Qwerty, its distributor or its retailer)
assumes the entire cost of alI necessary servicing,
repai r , or correction and any incidental or
consequential damages. In no event wiIl ewerty be
I iable for di rect, ind i rect, incidental or consequent iaI
damages resulting from any defect in the software r even
if Qwerty has been advised of the possibility of such
damages. Some states do not allow the exclusion or
I irni tat i on of i.mpl ied war ranties or I i abi 1i ty f or
incidental or consequential damagesr so the above
I"imitation or exclusion may not apply to you.

WARRANTY

Qwerty, Inc. ("Qwerty") warrants the Q-68 pC card to be
free from defects in mater ial and workmanship for a
period of ninety (99) days from the date of or iginal
purchase for use. Qwerty agrees to repair oE r at its
option r r€place any defective uni ts without charge
during this warranty period upon prepaid shipment and
receipt of the unit at Qwerty Inc, San Diego, Calif.
Qwerty assLlrnes no responsibility for any direct,
indirect, incidental, special or consequential dama.ges
resul-ting f rcin any def ect in the hardware. Some states
do not allor* the exclusion or limitation of implied
warranties or I i abi 1 i ty for incidental or consequential
damages r so the above l imi tati on or excl us ion may not
apply to ycu. This warranty is non-transf errabl-e. This
hratrranty is valid when registered within Len (10) days
cf purchase date, (0PAK-68 Registration Card enclosed) .
No other warrenty, written or verbal, is authorized by
QwerLy.

QPAK*58
System Reference Manual

Table of Contents.
Part f. The QPAK-68 System

Chapter 1 Getting Started
What You Bought...........o.........,.......I-I
What You Nged..... r !........... r. t !., o......1-1.
Whatts In the Boxo.. t...., t... !, a. !. r e. c....1-I
Installation And Startup. i a e.......... r..,. o 1-3

Chapter 2 The Q-68 Board

Introduction.......... a..............,.. t.
MemOfy Map.................... c...... o....
Low Memory is Important to the 68998.... o.
Low Memory is Also Important to the 6592..
The Double Page Zero Dilemmaa e...... o.. o..
The Watchdog Timgf. "................ o.....
System Timing........................ t.. o.
Morg Usgs For Q-58 Mgmofy............. r...
Q-58 Board User Options. "... o.. a....... e..
X1-X2 Jumpef .. r r. o
X3-X4 Jumpef ". c , . e
Expanding thg Q-68 Board............. o....
Powgr Consumption and Fans......... o..,...

. .2-T

. .2-l

. .2-3

. .2-3

..2-4
" .2-6
. .2-6
..2-8
. ,2-9
. .2-Lg
. .2-LA
..2-11
. .2-L2

Chapter 3 The l{acro Assembler

3.2 68gg6 Assgmbler Syntax............ o.......,,3-3
AddrgSS ModeS.............. o... r..... r..3-3
Absolute Address Modes.. !....... ... c....3-4
PC Rglativg Modg..,....... .3- 4
68ggg Extgnsions............ t.....r t....3-5
Conoitional Branch Instructions. 3-6
Miscgllangous Notes,..,...... e.. e. r. r...3-6

3.3 Tutorial.. 3-7

3.I Introduclion.............o........t.r.......3-t
The Macro Assemb1gr..r... r........o.....3-l
The Editor...,.,.... o...,3-2

3

Entering a Program.......... r o........ ..3-7
Saving a Source Program on Disk,........3-9
Assgmbling a Source Program.3-Lfr
Executing the Object Program.. c....... t.3-13
I'{odifying a Source Program. 3-13
Easier Entry of Source Programs.........3-14

.4 Source ProgramS..... c o............... o......3-15
Automatic Ling Numbgring. !...3-15
Built-In Tab Stops................o.....3-f6
Label F ield. .

NormaI Labels ,3-r7
Local Labgls...................... ".3-I7Private Labgls...o..................3-I9

Opcode FieId............................3-19
Operand F igld . 3 -29
Comment Field"... t .. .3-2r

Commgnt LineS............ e...... t...3-21
ESCAPE-L. { 3-2I

Cursor Contro1s. 3 3-22

. r . .3-23
Assernbler Commands.

Source Commands....
NEW. e .
LOAD...........
SAVE...........
TEXT o o t .
HIDE. . . . c . . ' . . .I"IERGE..........

.. . o.3-23.....3-24

.... "1-24.... .3-24.....3-24

.3-25

.... "3-25.... .3*25
RESTORE. t..... 3-27

Editing Commands.........r.............. 3-28
Range Parametgrs.... *.........3-28
String ParametgrS...................c.. .3-29

IIST and FIND.................r.....3-39
EDIT...................t............3*31
REPLACE.................. o.. t. o.. c. .3-32
DELETE'............ o......... o i.....3-33
RENUMBER......i a.... G o.' o c t.. e... ". t3-34
COPY.... e.c. e.......t....... 3.......3*35

Listing Contro], Cornmands. e .. 3-36
FAST and SIOW............ a....... *..3*37
PRT........ o r. r... c. o 6 4.. t G o. c. o t. o ,3-37
(t')3. . . G.... t. 6. G o i i.. t 3-37

Execute 68ggg Code Commands. . . * r . . *, ., . . 3*38
QON........ {. o. i c c.. t........ r r. s. I " 3*38
DBUG....c.o.c........ t i..t.....o..o.3*38

Objgct Commands.. o. ' e..... o.... '..... G. " 3-39
ASM. c.... r.. e........ o. t.. t.. t. G. . . " 3-39

lt'I GO
V4L...... r.........
SYMBOLS.. t....,....

M i sce 1 I aneous Commands .
AUTO.....
MA N U A L .
INCREMENT. o o.
MEMORY...... r o.......... ..
MNTR... ".
RST. o r
USR............ ... o

DOS Commands. "..... t r o o..
lvlonitor Commands.............,..........

3-39
3-4A
1- 4s
3-41
3-41
3-41
3-42
3- 42
3-42
3-43
3-43
3- 43
3-44

3.7 Operand Expressions..... ...

. OR Or i g i n . r r

.TA Targgt Addrgss..........

.TF Target Fil€.............
" IN Includ€......... o..... r.
.EN End of Program..........
'EQ Equatg.....r.....o......
.DA DatEI....................
.HS Hex String.,...... r.....
.AS ASCII String.,....... .. .
.AT ASCII String Terminated.
.BS Block Storag€..
.Tf Tit1e.o......t..........
.LIST Listing Control......
.PG Page Control............
.DO Conditional Assembly....
. ELSE Cond i tional Assembly. .
.FIN Conditional Assembly...
.MA Macro Definitioll ..,,.r..
.EM End of Maero....... c t,..
,US User Direetivg.......ro.

E I eme n t S .
Decimal Numbers... r .
Hexadeeimal Numbers.
Labels.......... r........ t
f,iteral ASCII Charaeters..
Asterisk (*) o.........

O pe r a t O r S .Arithmetic: +t -, *, /.....oRglationall <r =r).........

. . 3 -47..3-47

. . 3 -47..3-59

. .3-59

..3-59

..3-51

.,3-52

..3-52

. .3-53

. .3-53

. .3-54

. .3-54

..3-55

. .3-55

. .3-55

. .3-55

..3-58

. .3-58

. .3-58
.3-61

3-5 I
3-6t
3-6r
3-5 1
3-62
3-62

.3-62

. 3 -62

. o 3-6 3

3. B Macros. . . . r3-65
A Simple Macro.....3-65

Chap te r

CaII parameters. 3_66Private Labgls................. o........3-68Listing the Macro Expansion.............3-69
Using Condi tional Assembly in l,lacros. . G . 3-69Ngsted t"Iacro Dgfinitons..3_7LPossible Errors................. o.......3-73Macros and Subroutines.................. 3_73

4 The Qwerty Debugger

why
Two

use a Debugger?.....
Kinds of Errors... o.
Assembly Errors. o...
Run Errors...... o. c.Starting DEBUG.e...........

For Those Who Can I t Wait.. .
The F ive DEBUG Screens

The

CTL-D..
CTL-G..

.4-1

. 4-2

. 4-2

.4-3

.4-3

.4-5

.4-9The Data Window............. r...... o.... 4-gThg Status Window................ o......4*Lg
HELP Screen. , . G a " 4-12

ESCAPE.CycIe Window Command.. o .4-I3CTL-B.. r........BREAK...!. ...,. ...,..,..4-13

CTL-V"...... o...Vigw Apple Screens. o. *..4-15CTL-W,..... o.. ".Displayed Data width. ...4-L7Thg REGISTERS Screen...... r............... e.4-lBThg MEMORY Screen.. c.........

CTL-P.o., .. .Sgt prograrn Countef .,., .4-14CTL-S...........Set Status Rggister.. o..4-]-5
CTI-T.. 6 "Trace.. . . " .4-r5

.4-19
Thg DISASSEI'IBLY Screen.. c... G, e c........... "4-ZLA Point.ed Issue...3..,..ti........ o.. r.. 4-ZZ
Thg BITEAKPOINTS Scrgeno........ o......... o..4-23

Sgt AddreSS" "....... *. e. r o..3....., c.. ".4-23Sgt Counterr. c r... t. *.. e 8.. G..... r $,... .4-23
Set Commgnt... r. r. e. +... r.... t..... c.... 4*24
TRAP s15r o.. r.*e.r..r.r. "4-24Excgption Vgctors. r.. e. c.. e. a.,.. e...6.. e.. " 4-2S

Remote 1.1 *dg.. *.,... c.. r... !..... o €......... "4-25DEBUG Memory Usa$g...... o *.. 4-26

Dump Scrgenr. . . . c.......4-13
GO...... j $..... *.. r.., c .4-L4

..4*26
"o4-26
n ,4*27
, .4-29

Uggf u]- t)filluc Routings.. c. c......... e e o *Ilisassernble Cne Line CIf b*fiTfr Code.
Put i"!essage on Apple {g*CoI Screen.
{iisplay Hex and Binary Digitsi,...*

Zip Sound.... t4-29

Chapter 5 Self Test
Preliminary Tests...............,.....o.....5-I
The Obligatory Warranty Statement... o...... .5-2
T B s t P r o c ed u r g . 5 - 2

Chapter 6 Appendix

Appendix A: Macro Assembler Operation and
ltlemory Usag€....................A-1

Configuration Requirements. , . . . 3A-l
Contents of the Disk... o................A-1
M emo r y U s a 9 € . A - 2
ROM Usag€.. o.A-3

Appendix B: Assembler Error l,lessages. "B-1
Appendi x C: Quick Check of the Q-68 Board. . "C-l
Appendix D: Starting Up QPAK-68........ o....D-l

How CTL-D Works...... o............ c. o...D-3
How CTL-B Works".c....... r..............D-3
Remote t*'lode.............................D-4
6592 Listing: Q-6B.STARTUP.BIN..D-6
BASIC Listing: QPAK.STARTUP........D-l1

Appendix E: Things That Could Go WroD9.....E-I
BASIC Bghavgs Erratiea1ly........E-I
The Disk Doesntt Work (T/O Error).......E-l
Apple Goes Completely Dead,E-2
Nothing Happens When I Type "QON".......E-2
Typing ttDBUGt' Dogs Not Work.......... ...8-2
Canrt Pass Characters to DEBUG (Remote).E-3
DEBUG TTCTL-Dtr Command Doesn I t Work.E-3
CautionS...... r. t. o........ o....... c. r..E-4

Section I I 68ggA Design Topics

Chapter 7 Hardware Topics
Except i ons o . o . . . r7-1

Thg RESET Vector.... o.. !.. . , r. c.... o... o 7-z
Bus Error.. . .. o. . o t7-4
Level 7 Interrupt Autovector..... e.. !...7-4
TRAP 15 ' o.. ...7-4

t*gTfr Intgrrupts........ e...... r...... r..... 7-5VectorS.................. r........... ...7-6Autovgctors........ 7 -6ritting 64 pins int.o 48..............e ..7-7Exercising the 1Bgfrg Interrpt System....7-B
DB&W: DTACK, Bus Errors, and Watchdogso.t. n.7-ll

What is DTACK, and Hcw Do I Use It?.....7-11
DTACK". o........ .. r o ..7 -11tlore About DTACK, Atl About Watchdogs"..7-I5
BERR: Another Way to End a B'.ls Cycl-e " n . .7 -16
Try i ng Out the Bus Er ror Mechan i sm Wi til

thg Q*68 Board.. *... c, o o... .7-LgThere Are Actual-ly Three Ways. o........ .7-2L

Chapter B Softv*are Topics
g.l

7.1

l.l

7.3

R?

"'
The

Tvr*

Dat,a Siecs. ".Numer0us
Labe l" s as
Wi t i: the
Labe 1 s es
Labels in
A Partinq

8-r
Practieal Examples" ". c.. o. o. *. " B-3

Ilata Values.,.. *. o 6 r o t.. s e c..,8-3tlLEAll Instructioo.. * ! o. e c... f o.B*4
Addressesc.. c.. c. o * ,.., $ e. a...8-5rr.DA!r Direeti.ves. B-6
Qugst i on. * . , + e . . $ $ * * s G . a . . . r . . 8*6

8.2 S ign ExLens"icln, * € . G, 8*9
When Does 25 P3-us 65 o 53# EquaI 19 ?c. 6 . . * g-g
Sotng TwO$s Conipl.emenL. $tuf,f -,.. e + + I * s, & r 8*I0
68fi99 Aatilr. ss Arithrn*t,ica,., & e 6 € $ i.. o. * rE-lgtata R*:gi.st,ers ane] *,Jriress Rr,.,;Si.stergi 6 q . . B-I2
68fifr{i StEn Ext*risi*n

- ar:* the Apple l"1;*fiiqir-.y,* . . * . ? c $ c * c e s " S-1 4

?AS Inst::u*ti*{},* *.
St*r:}'; E',iint-*rs Nam*d'oATot o * -. . * 4 F .
Tf:* ilte.*t $ ter:k l>cinler {s}, . . I s ! b €
fiup*rvis*i.-,*r}* iJs*:"- E usr-+,; + . i, s 4 .

. $ e n s-rS

e ! c o o o 8*L7

. $. . " .8*1.8
r ! + + . . ii - i.,$

The Q-68 Board
Supervisor /tlser Democracy. 8-19

8.5 69ggg Goteha #1:
The Case of the Creeping Program S iz€..8-21

Chapter 9 Appl i cat i on No tes

Chapter Lg Inserts-1

Chapter 11 I nser ts-2

Chapter L2 Index

o
(D
FI-.ts.-u,

0e
0
d'triFI
(Dg

Eq)PL
63Ia
a0
dI.E::,
€)(,

Chapter I GETTING STARTED

WHAT YOU BOUGHT

The QPAK-58 is your window into the faseinating world of the
6\ggg microprocessor. It allows you to turn any Apple II,
II+ or IIe computer into a ful1 funetion 69ggg development
sys tem .

WHAT YOU NEED

You need a 48K Apple, and a single disk driv€r as a
mi n imum.

A 16K (Ianguage) card (or IIe) is highly recommended, so
that you can write large programs without having to save
seetions of them on disk. Two versions of the 6BgAg cross
assembler are suppl ied , one for use wi th a language card ,one for use wi thout.

WHAT I S IN THE BOX

First, some books. These are the best books on the 68AgU
microprocessor we t ve found.
l. The 68906: Prineiples and Programming, by teo Seanlon.

Scanlon is one of the best technieal wr i ters
uses an easy, clear styIe, and really knows h
This is an ideal first book on the 68gAA.

oing. He
s stuff.

g
a

1

3. l,tc68gg9 16-Bit Microprocessor With 8-Bit Data Bus.
Motorola ADI -939.

1-1

4

This is the data sheet for
the QPAK-68. You hardware
timing diagram at the rear

the 5BgA8, the CpU used in
types wi I I love the fold-out
of the book.

the 6?ggg. Each
bi t dry, but very

The 68000 User I s Guide (Motorola) .

The standard reference for programming
instruction is described in detai I . Ainformative.

5 QPAK-58 Userrs Guide.

This book (which you're reading now) provides
instal lation and operating instructions for the
QPAK-68.

Part I deal"s with the system components--editor,assembler, debugger r and e-68 board information.
Just as we searched far and wide for the best 6\gggbooks, we also looked for and found the best (we think)cross assembler for the 680gg. It is written by S-CSoftware Corp.

This is a great l"lacro Assembler . I t is sirnple, powerf uIand easy to use " And, there is a hridden bonus tolearning and using this assembler. S-C also makes cEossassemblers for other CpU rs. you can get them for the
8U48 | the ZBg, the 68fr9, even the pDp-Il. And they're
al I ava i lable at very reasonable cost.
The beauty of the S-C approach is that you learn theoperation of the assembler only once. All of theirother cros$ assemblers use exactly tkre same syntax, data
types , pseudo-ops r etc . Thi. s means that you can rnove
frorn CPU to CPU without seeming to change assemblers.This is a sensible and practical approach.
Tucked into this Userf s "Guide is a diskette containingthe Macro Assembler. The diskette is not copyprotected; back it up immediately and use only your
backup copies.
Part 2 of this User's guide contains tutorial
i nf ormat i on CIn the 68ggg rni croprocessor . t{ardware and
sof tware topics are di scussed and i l l"ustrated wi thactual 6BgAg programs. These programs are included wi ththe QPAK-68 diskette so you can run and watch thernycurself"

L-2

le II hardware board called
mag part of age. I

-6 B This is
as8sa

proeessor to the Apple eomputer, and allows you to
actually run the code you developed using the Macro
Assembler . To aid you in finding program bugs, theboard also ineludes a firmware monitor/debugger (in
EPROM) which al lows you to see exactly what's happening
i ns ide the 6BggB .

7. A pocket_grlide to the 68gtg instruetion set. If this
1i ttle book is not dog-eaied afEei-;5ouE-6 months r you
arenf t making ful1 use of your epAK-68 systeml

8. A 68ggg foldinq__p_r_qgramming card. The official
ref erence card f rom t,lotorola.
shirt poeket and impress your

Put this eard ln your
friends.

2

INSTALLATION AND STARTUP

I . Look for the box wi th the e-6 I board in i t .

your Apple I I and remove the cover . you need
II, II+ or IIe with 48K of RAM, and a disk.
you can run the system with or without a
(16K RAM) caEd, you should have one if you plan
and assemble large programs. If you have a
'rlanguage card" is built-in.

Turn of f
an Apple
A1 though
language
to write
IIe, the

3 Insert the Q-68 board into a vaeant slot. The system is
ini tial ly configured for operation in slot 4 t the fourth
slot from the RIGHT. I f you already have something inslot 4 | use another slot and remember which one for step
6.

Leave the cover offr so you can see the two lights on
the Q-68 board. Locate the diskette inside the cover ofthis book.

MAKE A COUPLE OF BACKUP COPIES OF THIS DISKETTE. We did
NOT copy protect this diskette. Always use backup
copies fgr your work, never the original. The "COpyA*program on your DOS 3.3 System Diskette works fine for
making a copy.

Put the diskette in drive 1, and power up. The epAK-G8system automatically loads, and you are given five

4

5

6

1-3

6.

7

choices from an onscreen menu.

I f you didn I t use slot 4 for the Q-68 boaf,d, choose
rnenu i tem I and reconf i gure the system f or your
particular slot. When the slot shown at the top of the
screen matches the slot your Q-68 card occupi€s r select
item 5.

If you have a language card or a IIer s€lect item 4 from
the menu, !'RUN ASsEt'l. AT $oggg". rf you dontt have a
Ianguage card , select i tem 6.

NOTE: I tem 6 is not shown on the menu. I t loads a
special version of the assembler at $4ggg for this
demonstration only.
This special version aI lows short programs which use
HIRES screen *I to run without the language card version
of the assembler (the language card version avoids the
HIRES memory) .

If you do not have a language card and wish to write
programs that use the HI RES screen *I , you can use thi s
version of the assembler.
After about 2g seconds, you should be on the air with
the EDITOR/ASSEMBLER. You I 11 know you are in the EDIT
mode by the colon (:) prompt.

Type LOAD DEttOI, followed by RETURN. (A11 commands are
followed by RETURN) .

8. Type LIST, RETURN, to see a real li.ve 68ggg program

9. Back at the (:) prompt, type ASI-1 , RETURN. This
assembles the DEI,IOI program" Quick, isntt it?

lg. Now type QON, RETURN. This starts the 68gg8. The red
light on the Q-68 board should be ON. Do you see wild
gyrations on your Apple II screen? If you do, all is
well. I f you don i t, something is wroftg. Go directly to
Chapter 5, "self-Test'r.
Notice that the four I ine text window at the bottom of
the screen is still active. The 6BggB is running the
top of the screen, and the Applers 55gZ is running the
text windo\rrr both at the same time "

11. Type MNTR, RE'[URN. This takes you to the Appl-e monitor,
with the familiar (*) prcmpt.

t*4

L2. Type CgC3 | RETURN. you should hear a trZZ,Z ip', sound, andthe screen should stop eycling during the sound. Ifthis happens, you have successful 1y acti vated the e-6 Binterrupt. Donft worry about the numbers shown at thebottom of the screen. The Apple has read loeation
$C0Ca, and found meaningless information there. The actof simply accessing this memory location does the job ofinterrupting the Q-68 board.

13. Hit the RESET key (cI1-RESET on the IIe). This stops
the Q-5 I boa rd , and take s you baek to the ED I TOR .

14. Now type DBUG, RETURN. This starts the e-68 board
again; this time running the DEBUG program out of
onboard EPROM.

Use the r i ght and le f t ar rovrs to see the f i ve DEBUG
screens.

You t re in bus iness !

I f you didn't get the expeeted results, proceed directly to
Chapter 5 r "Self-Test".

I-5

r"-fi

cIo\a
EEoprla

__

a

EL
6lotr€\o

ac

Chapter 2z The Q-68 BOARD

I NT RODUCT I ON

The Q-68 board adds a second processor, the 68908, to the
App1e I I computer . I t plugs into any slot (* f-*7) and
shares the 6 4K memory on the Apple' s motherboard . I f the
Apple I I has a 16K language card, thi s addi tional memory is
also access ible by the 6\gfrB.

The 68Ag8 runs simultaneously with the Apple's 65q2 on a
cycle sharing basis. Whenever the Q-68 board needs access
to an Apple resource (such as the graphics screen or
keyboard) it lengthens the 6592 clock and inserts a memory
eycle of its own.

The Q-68 board is controlled--turned oo r turned off and
i nLer rupted--by the Apple I I eomputer .

The Q-68 board makes no distinetion between User and
Supervisor states. This means that you can use either
operating mode, and switch freely between them.

The 6BggB is eapable of addressing a megabyte of memoEy. It
is convenient in this applieation to consider the megabyte
as sixteen 64 Kilobyte areas.

ME},IORY MAP

The complete memory map for the 68Ag8 on the Q-58 board is
shown on the f ol l-owing page.

2-L

$n'gggg-$n'FFFE
$ngggg-$nrn'n'r
$og ggg-$oFn'n'r
$c g ggg-$cn'r'n'r'
$s g ggg-$BFFFF
$eg agg-$en'n n n
$9gggg-$SEFEF
$Bgsgs-$aEFFF
$t sgss-$ ZFFFF
$6gAgg-$6FEEF
$Ss gss-$SFFFF
$4gggg-$aFFFF'
$3gggs-$TFFFF
$zgsgg-$ZFFFE

$fgggg-91FFEF

Open

for

$rsgsg-$r7FFF

opt i ons

Onboard RAM, 2 Kilobytes
(expandable to 8 Ki lobytes)

Onboard EPROl,t, I Kilobytes
(expandable to 32 K i lobytes)

Apple I I memory$ggggg-$gFFEF

The lowest 64-Kbytes of 6BggB address space is occupied bya1l the memory in the Apple II. The next 64-Kbyte ipace isoccupied by memory on the e-68 board. Locationi $lg ggg
through $I7FE'E are occupied by an onboard B-Kbyte EpROtI, andIocations $IB ggg through glf'nf f are occupied by an onboard2-Kbyte RAI'{ " Both of these memory spaces ,twrap aroundtr .For example, the z-Kbyte RAM can be addressed starting at
$18 ggg, $1BB fi6 , $19 gfrg, and so on up to $In ggg (si xteenplaces) .
If larger rnemories are install"ed on the e-68 board
example r do I Ki l-obyte RAl,t or a 15 Ki lobyte EPROM)starting addresses are the same as for the smal ler
memor ies.

(f or
the

The other f our teen 64K areas <lf 6BggB memory are f ree f or
expans i on . An expans i on connector on top of the board i sprovided for interface to future options such as memory andvideo boards *

We need to take a careful look at the bottom 64K of memory"This is the Apple nlernory, which is shared by the 6BggB.
When you run the Macro essembler, it puls 6BggA object codehere.

z-t

BoLh the 6592 and the G\ggg ean read and wr i te thi s lowmemory. We wi 1 I thus refer to the shared memory as be i ngaecessed f rom the Apple {6562) side and the 0-69 (68g gg,t
side. When you do an assembly of 6BTAB code, it is put intothe memory from the Apple side. When you aetually run thecode by turning on the e-68 board, it is accesse,C from theQ-6I side .

LOW MEMORY IS IMPORTANT TO THE 68998

The low memory for the 6BggB has speeial signif icance" Allof the except i on vectors res ide on pages g through 3($ggg0gg through $gTg3FE) . We I lI talk a lot more aboutexceptions, but for now let's just say that imporLantinformation required for 6gggg operation is stored in thresebottom three pages.

For example, when the 6BggB first turns oo r it fetches two32 bi t values from locations 0 and 4 (the 6gT0g addressesmemory in bytes, so a 32 bit word spans four bytes). The 32bi t contents of loeations A-3 are loaded into tne SSp(system stack pointer) , and the 32 bit contents of locations4-7 are loaded into the pC (program counter) . 6BAgg
oper a L i on then beg i ns at the add ress he ld i n the pC .

Take a look at page 5-4 of the MC6BggB data booklet suppliedwith your QPAK-68. This VecLor Table shows what the 6ggggexpeets to find in the bottom IK of memory. I f you arecur ious about these functions I refer to the appl icationsection on "exceptions" in Section 7.L of this manual.

LOW MEMORY IS ALSO IMPORTANT TO THE 65A2

The low memory (bottom 256 bytes) of the Apple II also hasspeeial significance. page g is the only section of G5Az
memory which can hold memory pointers whictr are used forindi reet address ing. AIso, special G5gZ instructions canaceess "page zero" loeations faster than elsewhere inmemory. For these reasons, all Apple I I softwar€ r includingthe monitor, DOS, and Applesoft BASIC make heavy use ofthese preeious 256 bytes on page g.

Page I is used by the 55gZ to hold the stack.used by the monitor as a keyboard buffer. page
Page 2 is
3 is used to

2-3

store 6592 vector s--addresses of rout i nes for handl i ng the
RESE'f key, and the BRK instruction, f or example.

TT{E DOUBLE PAGE ZERO DILEI'{MA

We seem to have a problem here" In order to prepare for
turning on the 580QB, the App}-e (actually the Assembler,
running in the Apple) must load certain values into low
merncEy. But loadinE the values necessary for 68gg8 startup
at l-ocations fr-7 (and others on page gl would interfere with
proper operation of the Apple. For this reasonr sp€cial
circuitry on the Q-6S board moves the bottorn of 58ggl memory
out of the bottom of thre App1e t s memory map.

Specifically, it swaps pages $0-$3 with pages $g-$8" This
meafis r for example, that to put a number at 68gg8 location
$fifi64, the Appte writes it at location $AA 94. The fact that
these memory spaces are swapped meaRs that the assembler can
also access 68008 pages $A through $g--by wr i ting pages $g
through $3.

AI]" other memory is lef t alone. Location $2enC in the Apple
corresponds to location $TZABC in the 58flfr9, for example.

?*4

The following diagram shows this memory swapping in detail'
Apple Memory

$rrFr $rrrr

(no ehange)As Viewed
From the
Apple

As Viewed
From the
68O frB

$oafio

; Loca tes th i s eode at SBA$B PAGE A

;SSP (Supervisor Stack Pointer)
; PC --PROGRAT,I START ADDRES S

$ osrr
$sBss

$63FF
a

(no change)

$O3FF $ osrr
$sss u $s8ss

Note that the right half of this diagram shows that writing
6BAgg locations $8gg through $err corresponds to Apple Pages
$g through $3 . Us ing these 6BA08 locations is def ini tely
not recommended due to the overlap of the eritical Apple low
memoEy. I f you real ly need to put data ther€ r you t re on
your own as far as the Apple is concerned.
Here are some practical examples of how thi s memory swapping
works.
Every 6BggB program requires that the RESET vectors be
initiaLrzed. The diagram above shows that 6BggB page g

corresponds to Apple page 8. So code of the fo1 lowing form
is required somewhere in the 6BATB souree. Keep in mind
that this is eode "as viewed by the Apple" r since it is
generated by the eross assembler. The vector addresses
shown are for example purposes--they can be anything.

OR
DA
DA

$Bss
$ssss5ssa
$ssssLaas

The .DA direetive meaosr t'store the numerie constant in
memory". This code establishes the SSP at $50A0, and begins
exeeution at $10A9.

2-5

a
a

a
a

a

If a routine is to be called as an exception, its address is
placed at the proper place in the 68gg8 page g vector
table . For example , the rou t i ne whose address i s placed at
AppIe location $BBg (68008 location $Ag) will be executed
whenever a TRAP *g instruction is encountered. If you use
the QPAK-68 system disk to start up the Q-68 board, you
don't need to worry about installing the startup vectors.
The system does thi s for you. Append i x D shows you how th i s
is done.

THE WATCHDOG T I I.,IE R

In the course of writing and debugging machine code, it is
poss ible that you wi 1l inadver tently atteinpt to access
memory which does not exist in the Q-68 systern. I f no
special measures are taken to allow for this possibility,
your prograrn can hang up indef i ni tely. What actual ly
happens is that the iBfrgB patiently wai ts for a DTACK signal
(Data Transfer Acknowledge) which never comes. See Section
7.3 for more information about DTACK.

The Q-68 board rncorporates a special timer which detects an
atternpted access to nonexistent mernory, and acLivates the
BERR (Bus ERRor) signal on the 68998 i f thi s happens. This
tr iggers an exceptian sequence, which yoLI (and the suppl ied
DEBIIG program) can use to recover f rom the er r*r "

I f a memory does not respond within l8g microseconds after
being accessed, the watchdog t.imer tr ips a Bus Error
exception. When this happeils r the 68S08 slacks Lhe FC,
Status Regi st€r r and other processor status i.nf CItrmati on,
then jurnps fo the address held at 68098 location
$ff0998-$ggilfiB. (These aCdresses correspond ta $8gB*$BgB in
the Apple II).
I f you have an appl i caLion usirich cal i.s f cr a longer response
t ime t,ha* 1"8 CI mir:r+seconds t an exarnple miEht be a video
riyst'*:sn vrhere the CISu wa i ts f or ver t ica]" 'olank i ng bef ore
upda t i ng the v ideo mernory) , the watchdog Lirner can be
disabl-ed hy removing jumper plug #a on the Q-58 bcard"

SYSTEI.{ T].HING

'Ihe 689fr8 is clocked by the Apple I I t s internal 7 " l-6

d--Li

Megahertz cloek. Depending on whether or not the 68998 isaecessing its "own" (not Applet s) memory or not, the 6592
processor in the Apple II runs at two different speeds:

When the 68AA8 aeeesses memory in the Apple II memory
space (the bottom 64K), the Apple's 6592 runs at half
speed .

When the 6BggB aeeesses memory outside of the bottom
64k, the Apple' s 6592 runs at ful I speed.

There is a simple way to gauge how much of the 65q2rs
processing time is being "robbed" by the 68A98. S impl
"CTRL-G'' to sound the App1e|s beep. If the familiar h

hi r
gh

v
I

1
pitch beep is heard, the 68gg8 is not using any Apple II
memory. If the pitch is lower, the 68AAg is getting into
the Apple memory at least some of the time. I f the beep is
an oetave lower than normal , the 6'8ggg is running
eontinuously out of the Apple II memory.

As for the 68A08, it too runs approximately twice as fast
when running out of its own memory than when running out of
the App1e II rs memory.

Two simple programs on the suppl ied demonstration di sk show
this speed difference. After loading the Macro Assembler,
type "LOAD VTDE0TEST" (foIlow all commands with a RETURN).
To see the program, type LIST. This program continuously
inerements all values in the Apple HIRES screen. Now type
ASl,l (assemble) , and when the assembly is f inished, type
QON. The HIRES screen should cycle continuously.
Now hit CTRL-G and listen to the tone. Hear the difference?
The tone is an octave lower than normal, because the Apple's
6592 and the Q-68 are running simultaneously.
Take a look at thre screen and get a rough idea of how f as t
the display is changing.
Now stop the 58008 by hitting RESET on the Apple.
Next, type LOAD MEI*{OVE. I f you LI ST thi s program, you ' 11
see the VIDEOTEST program, with a section of code added to
the beginning, This added code moves the entire VIDEOTEST
program into the 68g08rs onboard RAM, and then jumps to it.
The program is thus identieal to the VIDEOTEST program, but
it runs outside of the Apple memoEy.

Type ASI',1 , then QON. See the difference
display really moves now. Now type CTRL

on the
-G and

scr een ? The
listen.

2-7

There's the familiar tone, but higher than when you ran
VIDEOTEST. I f you have a sharp ear r you might notice that
it still is not as high in pitch as the normal Apple beep.
Thi s i s because ['{OST of the 6BATB memory accesses are coming
out <lf the onboard RAM (remember , thi s is where the program
was moved to). But. every time the Apple's HIRES video
screen is accessed, the Apple shifts to haLf speed.
Bef ore, in the VIDEOTEST program, aI1 mernory used
68gg8 was in the Apple. The program executed out
memory, and the video "writes" were made to Apple

by
of

the
Apple

trn Mnt{OVE, the prograrn part is moved cut of Apple memory and
into th* Q-68 board RAt'l. So the pi tch of the Apple r s beep
is lowered only by the propor tion of the program execution
t ime tha t the 68fiA8 uses App1e memory. Th i s happens for
video memory updates onIy.
I f the 6B0gE uses none of Lhe Apple memory, both the 6592
and the 68frU8 run at ful1 speed (I Megahertz for the 65A2i
7 " 16 Mhz for the 68fi98) .

!\,1C}RE USES FOR Q*68 T"1E},ICRY

The RAM on the Q*68 card can be used t,o rnove prcgrams out of
the Apple memory space for faster executianr ds demonstrated
abov*. Two othex uses are recommendeC f or the Q-68 RAI,I"

I f you wi sh to r3o st:aek operations r*'ith your 6B0SE program ryou nee<I ta lccaee the 68008 stack si::eevrhere in memoEy" ilhe
perfect ple-ce fcr it is in the Q-6E F";1P1 , s!n,::e i"t rloes not
get in the way cf any Apple I I code , and star:k operat i ons
execute quicker hers ther: cut of th* Apple memory.

I i you are u* ing DEBUG, yoLl can u,se tlre top Lwo pages of
,* -.$ E B*ard RAH f ,;r snyth i ng yc\t i*i sh " T hese two pages are
..* !* ai;"lresses $f E *fr9{-$1S?E'L- " A goo* piece tc' put a sLack
w*uld be $f S YUg. Tire stack works downwara in mernory as it
is pushed; up*lard when 5:r:p6,r*d " DHBUG placn"$ its internal
staciq at $186fiff"

Yrur 689fr? program will probably usr* 'uscraLchun Iocati.ons to
* tore var i ables . The Q-68 board R&l't i s a goctl place to put
t hein .

memofY.

tc stcre
t.w o

" f you rJc:n t t need DEBI.ifi e the **6 B EPltCi',I caft he u $ed
ii riilr o* f inal,u* routi.nss iri perm-anent, f {rrri. Again the

?*8

"onboard" advantages are rea1-tzed--faster execution andnoninterference with Apple programs.

Q-6 8 BOARD US ER OPT I ONS

There is a three position jumper bloek (marked "TBl") on theupper right corner of the Q-68 board. The board is shipped
with little jumper plugs at positions *Z and *3. This
seetion explains the purpose of these jumfrers.
Jumper position #1 disables access to the Apple mernory if ajumper plug is installed. This is provided for serviee
reasons . Chapter 5 descr i bes a tes t techn ique wh i ch
involves temporarily instal Iing a shorting plug at this
first position. For normal operation, jumper ff should be
left open (no shorting plug).
J umpe r
Error)
normal
timer,
ACCESS
j umpe r

*Z conneets the watctrdog timer to the 6\ggg BERR (Bus
input. I ts shorting plug should be left in plaee for
operation. I f you wish to deactivate the watchdog
remove the jumper. But remember that any attempted
to nonex i sterrt memory wi 11 hang up the system i f
*2 i s nol there .

.Iumper #3 maps the Q-68 board for operation in the epAK-68system. The j umper plug should be in place for normal
operation. Removing this jumper plug swaps the Apple II
memory space wi th the onboard ROM,/RAM. Wi thout j umper * 3 ,the onboard ROtl occupies locations $gAggg-$1FFFF, and theApple memory occupies $1g0gg-$fFErF. why do this?
There is a short diagnostic routine at the beginning of theonboard EPROM. I f you are trying to isolate a fault in the
Q-68 board, and there is a problem in the Apple bus timing,you wi I I never be able to star t up the board because the
RESET vectors are in the Apple RAM. So this jumper allowsyou to fi re up the system wi thout access to the Apple Bus,
and run the diagnostie program out of EPROM.

Another reason, which might be used for a special
applicatiorl r is to allow the board to run without using any
App1e memory. You eould code a eustom routine into the
onboard EPROT-'I , and by removing the third jumper start up the
686A8 using Lhe EPROM rather than the Apple memory.

2-9

XI-X2 JUI'lPER

The ?B-pin socket at location,C2rr has a 24-pin IC
installed. This is the Q-68 board's 2 kilobyte RAI,I.

This socket will also accept an I Kilobyte RAI,I (Hitachi
H1,16264-15 or equivalent). If this part is installed, thejumper at Xl must be cut, and the jumper at XZ must be
connec ted "

X3*X4 JUI,IPER

The 28-pin socket at location rrB2r' accepts a 2764 or 27LZB
EPROM (Intel compatible) with no alterations. The socket
can also accept a 27256 (Intel compatible) or ROt',l equivalent
by cutting X3 and bridging X4"

2*1#

EXPANDING THE Q-68 BOARD

A11 signals required for 68g08 expansion are available on a
s?-pin connector at the top of the Q-68 board. These
signals inelude the 20-bit address bus, the B-bit data bus,
and control signals " The fo1 lowing table shows the pin
assignments for this connector.
NOTE: S ignals with an asterisk are pulled up to +5 volts
through a Lggg ohm resistor.
1
3
5
7
9
t1
13
t5
L7
l9
2L
23
25
27
29
3t
33
35
37
39
41
43
45
47
49

A3
A4
A5
A6
A7
A8* rPLa-2/* LPLL /* BERR/* vPA/
A12* RESET* HALT /
GND
A 15*BR
BG/
A 18
R/w
DS/* AS/
Dg
D1
D2
D3

2
4
6I
LA
L2
14
16
1B
2g
22
24
26
2B
3s
32
34
36
3B
4s
42
44
46
4B
50

I NT ACR/
A2
AL
AO
FCg
FCl
EC2
A9
A 1g
A 1I
E
A 13
A 14
GND
A 15
A 17
Esss s /
Watchdog T imer Out,pu t
A19
D7
D6
D5
D4* DTAC K
N. C.

1

NOTE: The following signals are not direct 68gg8 signals:
E0ggq /. This is an address decode of $ngggT-$nrFFF,conditioned by AS/.

2. Watchdog T imer Output. This is the output of a
divide-by-256 counter which is clocked by the 6BggB
"E-clock" and reset by DTACK/ going high.
INTACK/. This is the NAND'ed combination of TCA, FCl,
and ECZ.

3

2-LL

Signals shown with a tt//tt are active low"
The six 6BggB ir:put signals IpL0-Z/ t IpLLl, VpAl , RilSET/,
H\LT/ r and tsERR/ are driven by e-58 board open-collector
drivers and 1K pullup resistors. This altCIhrs external
c i rcu j. try to share these 6BggB pi ns .

POWE R Ci]N S U M PT I ON AND F'AN S

The Q*'S8 board is specified to use 4gg milliamps (rnax) at 5
volts. The 5 volt supply is the only one used by the
i:oard.
The Apple II manual says that 5fr9 miliiamps {L/2 A*p} of 5
v*it pcwer is avai labl-e f or aIl of the expansion slots
combined * We have found this spec to be extremely
conservative* Flost epple IIts that werve seen (including
ours) are well stuffed witn peripheral cards--disk
controller, printer cards, serial cardso Efr column cards,
et,c . A f our or f i ve card complement of per ipheral cards can
easily corlsurne upwards of 2 Amps, and run withcut problems"
[.Je I ve f ound that the real worry is nct current consumpt ion,
buc HEAT "

Beyond about three or more per iphera I cards , you should get
a f an f or your Apple I i . l4any are ava i lable at computer
stores, from simple adhesive foam installation types twitfr
on- the-cord lamp type power swi tches) to side mounted uni ts
which contain power Iine fi. lters and convenience power
outlets. These side uni t,s are highly recommended.

I3y the way, i f you touch the t?frgl on the Q-6 8 boa rd , you ' 11
f eei- where most of the board I s power is consumed. The 68g0f
runs very hot. Don ! t worry, this is normal--the G*figg is
speci fied tc 1fr degree Centigrade operation "

Fo-FIorl

U)a
(DT
E,5E
(Drt

\

\-E
EE5o)
r,E {

Chapter 3 THE MACRO ASSEMBLER

Section 3. I INTRODUCTION

THE MACRO ASSEMBLER

The Editor /tssembler provided with the epAK-GB is written byS-C Software Corporation. I t is a power ful macro assembler ,which runs under the Apple II Disk Operating System.
We refer to the S-C paekage as the "MACRO Assembler"throughout this manual . To be teehnieally eorreet, it is
""!ua11y an EDITOR/Maero Asser,nbler. The EDITOR program isbuilt into Lhe package. This is one of the best feitures ofthe S-C program. you donrt need to shuttle diskettes baekand forth as you load an EDITOR program, €dit, save source,load ASSEMBLER, assemble, discover errorsr E€load EDITOR,ete.
The whole edit/assemble package is in memory a1l at oncer soit takes you exactly zero time to move betwLen the edit andassemble modes.

To further speed up the edit/assembly process, the S-Cassembler al lows your source and object fi les to be in
memory at the same time. This means that for a reasonablesize program, there are absolutely no d isk aeeesses
regu i red . The source i s read f rom merno ty t the assemb 1erruns from memory, and the objeet eode is stored in memory.
Quicklyl
To speed things up even further, you ean tell the assemblerto not list the program on the Apple screen as itassembles. Believe it or not, the sereen writing takes mostof the time in the assembly process.
How large a program can be handled without using the disk?You ean fit about 8 kilobytes of object eode , along with itsaccompanying source, in memory and sti 1l run the "alI-RAM'!system (language card/lte versioo) .

If your programs are Longer, don t t worry. The assembler
al lows you to load souree eode in seetions from di sk, and tostore object code baek to disk.

3-1

1

2

3

4

THE ED I TOR

The EDITOR portion of the assembler allows you to type in
and edit source programs in preparation for assembly by the
t'lacro Assembler.
There are numerous functi.ons in the Editor which are
tailored for efficient source program entry. Some of these
are;

Line numbers. These make inserting and deleting of
program lines easy. The line numbers are implemented
much as in BASIC. You can inseEt, delete, and renumber
program Iines.
Automatic line numbering. Hitting CONTROL-I generates
the next line number for you. The actual "next line"
number chosen depends on what you have selected as the
increment. You can overr ide this by typing in the line
number yoursel f.
An EDIT command. This allows you to edi t characters
within a line.
Search and Replace f urrctions. These automatical ly
search for a ctraracter string which you specify. Once
f ound , you can replace ttre str ing wi th another one . You
can choose to do the whole listing automatically, or
search only a line or group of I ines.
A COPY cornmand. This l"ets you rearrange your code. A
Iine or group of lines can be copied to anywhere in your
program.

5

5*/

Section 3.2 6BTOA Assembler Syntax

The opcode and reg i s ter syntax are taken from the Motorola
680g6 User's manual. Before delving into the detai led
r.rorkings of the assemblerr w€t11 present a general overview
of how the Macro Assembler handles 680Ag proqram code.

ADDRES S },lODES

The addressing modes and assembler syntax are shown below.
An or Dn specif ies a register r where n is a digit from A to
7i ttnumtt represents a number, labe1, or expression; and rrdrr
is a displaeement.
Dn

An

(An)

(en) +

- (An)

d (An)

d (An rAD) or
d(AnrDn)

num

(num
) num

d (PC)

d (PC, AD) or
d(PCrDn)

* num

Data register direct
Address reg i ster di rect
Address register indireet
Address register indirectwith post-increment
Address reg i ster ind i rect
wi th pre-decrement
Address reg i ster indi rect wi th
d i sp 1 aeemen t
Address reg i ster indi rect wi th index and
displacement
Absolute short or Absolute
(see below)

long number

Absolute short number (15 bit)
Absolute long number (32 bit)
PC relat i ve

PC relative with index and displaeement

Immediate

3-3

ABSOLUTE ADDRESS I.4ODES

In the absolute address modes, either l6-bit or 32-bit
addresses may be forced by preceding the address expression
with !t4tr or rr>tr. If neither is present, the assembler must
decide which si ze to use.

If you do not specify the address size, the assembler tries
to select thre rnost reasonable si ze. There are three f actors
considered in deciding wtrich si u e to use: the current
assembLy address {program counter} r whether or not the
address express i on involves a forward reference , and the
actual value of the address expression.
If the address expressi.on is defined befoEe it is
encountered and it has a value in the range $frggggO-$ ggV FFF
or rr'ggg-$FrrFrF, the assembler uses the 16 bi t mode .'
I f the address expression has not yet been def ined (it is
defi ned in a forward reference) , and the program counter is
in the range fcr a 15-bit address, the 16 bit mode is used.
I f the address express ion value is not in the range of a 16
bit value after forward references are resolved, a RANGE
ERROR is generateti" Ts assemble under these conditicilsr use
the Ir>* prefix t,o f,orce 32*bit motle.

If this seems a bit ffiysterious, take a Look at tlre
discussion cf, SI U ES in Chapter B. Also tai{e a look at
"Gotcha #1 " in Chapter 9.

PC RE T,AT I VE I'{OD E

Ttre program counter relative modes must have PC &s the first
regi ster " The Kane book says i t {nay be omi lted in the
simpl"e indexed fcrnt, i "e. d tAn) instead of d tPCrAft) . This
wi l1 noL work. The '!PCri is necesserlr f *r the assembtrer to
distisrguish tliis mode f rom the d (en) inode "

The expression, "dtt is an act*al addtress, e>r a }abel
corresponding t* &n address. The asser*b1*r subtracts the
currenk val.ue of the program count*r frorn thre d-expression
to get a disptacernent. Do noL try ko spe*ify !!drr directly
as a d i sp]-acernent " For eliample , d* ne:t ,rr i t* s

eDD TAtstE**qPC),L-3

3*4

Instead 7 wr i te :

ADD TABLE (PC),D3

6BgAg EXTENS IONS

Many opcodes aIlow an extension specifying the length (byte,
word, or long) of the data. If no length is speeifi€d, a 16
bit word size is assumed. An extension consists of a period
immediately following the opeode (No SPACES here) and the
letter rrgrr, ttwtt, rrtrr r of trgtr. The ttgtt is used for short
branches on ly.
The opcodes which allow an extension are:

ADD
AND
CMP
EXT
MOVEM
OR
ROXR reg
SUBX

ADDA
AND I
CMPI
LS L reg
MOVEP
ORI
SUB
TST

ADDQ
ASt reg
CI-,t PM
tSR reg
NEG
ROL reg
S UBA
Bcc

ADD I
AS R reg
EOR
T-,TOVE
NEGX
ROR reg
suBQ

ADDX
CLR
EORI
MOVEA
NOT
ROLX reg
SUBI

A11 other opcodes may not have an extension.
Note that ANDI, EORI, MOVE, and ORI, when used with the
registers CCR, SP, or USP, do not need an extension.
In the indexed addressing mod€s r the second register (An or
Dn) may have a .W or .t extension. This specifies the data
length to use from the regi ster . I f you speci fy the .W
extension, the 16 bi t data is sign extended before adding.

MOVE $34 (A3rA5.W), (ea)+
Here the souree address is formed by adding the 32 bit
contents of A3, Lhe sign extended 15 bit eontents of A5, and
the 32 bi t value $34.

Relative branch size is indieated by the suffix ".S" or
ll rll tl". L". " . S " after the opcode forces a short (B-bi t)

3-5

I.I Erc.Lr #
r\ rn

U}
t1i)
rr\tutl
Nff
E8
v(-
VS
PL
t"t I
/ar
(:fr

LT
/t rr1L, I

LE

displecement, " " L" f orces a long {16-biti displail*rnent,
I f nei ther is pEesent and the branch is to a pievi*xslocatiorlp ei.ther the S* or l6*blit displa*e*enl is puicked bythre essemhler e &s needed * Hcwever , i f the branch is to a
f orvrard lscatiorl r a 16*bi t di splae emsnt is assumed . you canoverride this wi.th Lhe ".S,' extension. This wili ilrovide ashor t hrancti tr: a f arward ref erence " Note thal onty BR&,BSRu and Bcc use an extensi*::. The DBc,; instructi*i alwaysuses e 1"6*bi t di sptracement "

CONDITIObiAT" BRANCH INSTI?UCTIONS

Ttre conditions for
f ol" Iows :

Llse wi tfr Bcc , DBcc r and Scc are as

tri gh
l*w or same
car ry clear
#er ry s*t
hi gh or seme (same as CC)ior* {sar*e as e S }r;ot equal
*qua i"
0verfl.our *l"ear
clverfioEx +et,
p}" us
minus
greater $r egual"
].ess than
greater than
less than str equa 1

In edditisfr, the fol"lowirrg rrlay al.s be used with DBc* and
Scc:

*,rue
f.*l-se
sant* es f a l" s* s used f or nBR&

i'it'f ii$

&l th*r391 s11ni6: in.sI-r:i"re tisn& r i,:ku: p"{i,* * i:*ve di f f *rent. f orrns
teiliis Fri.l*&u iqfr** *r"ld ADi;Ii * y{il} *ir:r;*t. oelw*ys Ll*ve lr: specify

I

tr

RA

r"g tr sc fi r" t A tt'It{iii $

the A Qr or I at
s for you.

the
For

end . The assenlbler i s
example, if you write

smar t enough to
the instruct i onrhdo

I
1

ADD Dl rA5
the assembler converts it to

ADDA D1rA5

Thi s works for ADD , AND , CMp, EOR, MOVE
l"tOVEA, not MOVEQ) , OR, and SUB .

(converts only to

If the instruction has a euick Immediate form (ADDQ, SUBQ),the assembler automatical ly uses that form i f the operand is
immediate and has a value from t through B. If it is out ofthis rang
The immed

e, the regular (longer) Immediate form is used.
iate form ean be foreed using ADDI, SUBI, etc.

data is out of range.
by
theThe Quick mode cannot be used if

When in doubt, use the T t e, A, or whatever at the end.NOTE: ABCD, ADDX, MOVEP, MOVEM, MOVEQ, SBCD, and SUBX musthave the speei f ied last letter at the end.
6\ggg instructions must start on a word boundary (at an even
address) . I f an instruction does not, the assembler gives
an error. This is most likely to oceur after a memory areathat conta ins byte-si ze data . Note that byte data can beplaced anywher€r but word and long word data must also starlon a word boundary. This is not ehecked by the assembler.
If you get this errorr cheek the preceding lines of your
eode. There will probably be a data area ther€. Just put a
.BS 1 or a .DA *6 after the byte data to force the program
counter back to an even address.
When using the MOVE, OR, AND or EOR instructions to changethe status register, the assembler sizes the data depending
on whether you use CCR or SR as the destination. I f rrgptt
is used, the assembler uses word size; if ttggptt is used theassembler uses byte size. The assembler does not accept
size extensions (".Btt or ".Wtt) in these cases.

3-7

j--"s

Section 3. 3 TUTORIAL

In thi s seetion , we I 11 go step-by-step through the process
of writing a small program with the Macro Assembler.

ENTERING A PROGRAM

First start the Macro Assembler by booting the epAK-68system disk, and seleeting menu item 3 or 4.

Then type in the following short program. Use the line of
per i ods to help gauge where to put spaces .

I f you make a mistake, simply retype the line. As in BASIC,
retyping a line replaces the previous line of the same line
number.

tagg
LgLA
Ls2A
Lg3s
Lq 4g
LA5s
LA6g
Lg1 6
LgSg
Lggg
LLqA
1116
LL2O

.oR
TIME . EQ
*
START MOVE.W
BEEP TST. B

.uovE . w
PERIOD DBF

DBE
BRA

*
.oR
.DA
.DA

$Lsas
$10s

*trME, D4
$cs3s
D4, D5
D5, PERIOD
D4, BEEP
START

$800
$8sas
$Lsss

; SPKR
NEW TC

NOTE: A11 eommands in this manual such as "LISTr are
enclosed in quotes. Do not include the quotes when you type
thern .

Now type "LI ST rr to see the program as the computer has
The display should look like this:

it.

3-9

;LIST
Lggg
LfiLg
Lgzfr
Lg3s
Lg 4g
LgSg
Lg6g
Lg1 g
LgBg
Lfr9g
LLgg
11 10
LLzg

.oRTIME .EQ*
START I*IOVE . W
BEEP TST . B

l"lOVE . W
PERIOD DBF

DBF
BRA

*
"0R
.DA
.DA

$Lsss
$Lsfr

*t il"18 , D4
$c03s
D4, D5
D5, PERIOD
D4, BEEP
START

$8s s
$Bsss
$Lsss

; SPKR
NEW TC

This listing is caltred a source program. It is the text
form of an assembly language program. Later we wi I I go
through the steps necessary to convert it to a form which
can be executed by the Q-58 board, but for now letts observe
what the source form looks Iike.
The first column contains line numbers. These are always
4-digit numbers. Assembler line numbers work just like
BASIC line numbers for editing, inserting and deleting
lines.
The second column contains labe1s or an rr*rr to indicate a
comment. There are two kinds of labels, memory markers and
var i ables "

The labels START, BEEP and PERIOD are used to di rect program
flovs. Line number LgBg, for exarnple, says to branch to the
label START, which has been defined in line Lq3g. The labeL
START actually corresponds to the memory location which
holds the instruction ulvlOVE.W *tf ME, D4 r "

You might be ternpted to write line Lggg as

LgBU BRA Lg3g

thinking that the target is line number Lfr39. Not sr:l
Remember that line numbers are used only for editing*
inserting and deletir:g prograrn lines. Never try to
ref ererrce thern in your source program code.

The second kind of label is a variable narne" In }ine lgl0,
the varieble TIME is set to the nunnber $Itrfi, usi*g thre .EQ
ieqr:ate) directi.ve* Any time the essemb].er sees the word

3- 19

TIME, as in line L039, it wilI substitute the number $Lgg.
The thi rd column eontains opcodes (Operation codes) . Theseare ei ther standard GB0g6 instructions r or specialttdirectivestt to the Macro Assembler. In our example, theinstructions MOVE.W, TST.B, DBE and BRA are used. Thedirectives, identified by two letters preceded by a period,are . OR, . EQ, and . DA.

The four th co Iumn eonta i ns operands . Operands fur therdefine the action of the opcode. The operand can containnumber, a label, or an arithmetic expression. A fewinstructions, sueh as NOp (no operation) , do not requi reoperand.

a

an

The fifth eolumn is used for comments" Comrnents are used toadd elarity to your assembly listing. The assemblerrequires at least one space before the eomment to set itapart from the end of the operand field. Some assemblersrequire a semieolon before a comment. As line Lg4g showsryou can use semieolons if you wish. As line LAsg shows,
however , they are not requ i red .
Lines Lgzg and Lfigg are commenL lines with only an asteriskin the left margin. These are used to separate blocks ofcode and produce a neater listing.

S AVI NG A SOU RC E PROGRA},I ON D I S K :

To save the program on your disk, type "SAVEis a standard DOS SAVE eommaod, just like you
BASIC.

NOTSYT'. This
would use in

When you look at one of these saved files uqing the DOS
CATALOG eommand, yourll notiee that they are flagged as 11[
fil€sr which signifies Integer BASIC programs. ifrey areonly marked thii way--they are not actu"tty BASIC piograms.They are 68090 souree programs, and cannot be run by integer
BASIC.

NOTE: You do NOT need
the Macro Assembler.

Integer BAS IC in your Apple to use

To clear memory for a
"LIsTrr to verify thatprogram from disk type

new program type "NEWtt. Now type
nothing is there. To reload the

"LoAD Norsyn. Now type ttt,lsr" and
back in Apple memoEy.you' 11 see your program

3-11

ASSEI"IBLlNG A SGIJRCE PROGRA},I:

A program must
be executed "Try it now....
Our program is
$rog0.

be assembled into bi" nary f orm bef ore i t can
The command to asserni:le a program is ilAslttt"

now assembled into rnemsrlr start.ing at address

I f you are using ,a 4g column screen, thre display should lookIike this:

{* i .t

: ASM

$L0asgggggLsg-
$Lss
ggggLqgs-
*trMErD4
saagLsa4-
gggglggB-
$c030
flaggLggA-
D4, D5
sgggLggc-
D5, PERTOD
sssgLgL0 -
D4,BEEP

Lsga

LgLq TIME

.oR

.EQ

Lgzg *
3 8 3 C gLOg Lfr3g START I"TOVE . W

ggfigLgl4- 50EA
START

Lggq *
LLgq

$800gggsuBsa- ssss sggs t11g
$BgfrU
sgsggSg4- Tgss Lsgg LL2q
$Lsss

4A 39 6ggw
cg3g
; SPKR
3A04

NEW TC
5ICD FFFE

5 ICC FFE 2

Lg{g BEEP TST . B

LUSA MOVE "W

Lg6U PERIOD DBF

Lg7 g DBF

LABA BRA

.oR

.DA

.DA

SYI.{BOt TABLE

ggggLgg4- BEEP
gwggLggc- PERIOD
AgggLggg- STARTgagggLgg- TrI,tE

gggg ERRORS IN ASSEI-{BLY

If yo
look

e using an 8g column screen, the display should

3- 13

uIi this:
ar
ke

: AST'1

gggggLsg -
sggglggs-
ggggLgg 4-
ggagLggB -ggggLg gA-
agggLggc-
ggggLgLg-
ggggLg 1 4 -

383c
4A39
cg3s
3A04
5 ICD
5 lCC
6OEA

gLgg
gggg

FFF E
FFF 2

Lggs
LgLg
Lg2A
Lg3g

Ls 4g
LgSg
Lg6g
Lg7 s
LASg
Lg9g
LLgg
11 1s
LLzg

TIME
*

BEEP TST. B
I'IOVE . W

PER I OD DBE'
DBF
BRA

*
"oR
.DA
"DA

$Lsss
$1ss

$cs3s
D4, D5
D5, PERTOD
D4 ,BEEP
START

$800
$8fr6s
$Lsss

; SPKR
NEW TC

OR
EQ

START MOVE.W #rrME, D4

gggggggg- gggg SggggggggEg4- gggg Lggg

SY},IBOL TABLE

ggggLfrg4- BEEP
ggggLgfrC- PERIODggggLggg- START
agggfrLgg- TIr'lE

gggg ERRORS IN ASSEMBLY

Notice that two more columns have been added to the left of
those we saw when we typed ntLISTot" The first nelJ column
contains the rnemory addresses (in hexadecimal) into whi.ct:
the program was loaded as it was assembled. The second
column shows the numbers (in hexidecimal) which occupy the
memory locati ons,

The Symbol Table is a I i st of aL l" the labels and the val^ues
assigned to them.

The program i.s now in memorlr in t.wo formso The sei-rrtre
program is ttrere r right beneathr tl0$ {starting at $96ilfi, and
working d*wnward in memCIry). The executable form, caLled
the *'obj*cto' prGgrem, is in mernory fr*:rn $1fitr9 thiro*qh
$f 915 - There is also a smal l- secEion of eode at $8##
thr*ug3: $E#?" This is initialisati*r* informat,iom r#tuired
by ttr* *Sg#S"

) t*

\- EXECUT I NG THE OBJECT PROGRAI1:

To run the program, type "QON", (return). Do you hear rrziptt
sounds comi ng from your Apple speaker ? The sound is
produced by eontinually toggling the Apple speaker by
address i ng loea t i on $C g 3g .

Congratulationst You've just written, assembled, and
executed your first 6BAgg program! As soon as you get tired
of the nois€ r hi t the RESET key. This turns off the e-68board and re-enters the Assembler. (If you have an o1d
version of the FB ROM, RESET will return you to the Apple
moni tor . Type "3D0G rf to return to the Macro Assembler .)

Now we have walked through the entyy, assembly, and
exeeution of a very smalL program. You'11 use exactly the
same steps f or a large program. In addi tiort r there are
other features built into the Macro Assembler which simplify
the process you just went through. To take a look at some
of thes€r let's modify the basic NOISY program.

MODI E'YING A SOURCE PROGRAM:

First type "LIST", and look over your program.

Letf s modify one line of the program to produce a different
sound. Type the following line:
L6Lg TI},IE .EQ $8s

This replaces the line LAL6 that was there before.
Now type "ASl'1", to create the new version of your program in
executable (object) form. And execute it, by typing "qON".Hear the difference?
You changed line L$LA the hard way, by retyping the whole
line. A line edit eommand is available to allow you to
change only part of a line and leave the rest alone. Type
"control-En' for EDIT. The word t'EDITrr appearsr with the
flashing cursor next to it. Type in the line you wish to
edit, L$Lg, and (return).
Now you see line LALI I with the cursor positioned over the

3-I5

f irst lett*r of ttre line. The lef t and right arrow keys
move the cur sor over the i. i ne . When you reach the par t you
want to *hange, simply tyi:e in the new inf ormation. The
I ine wi I I be accepted exactly as it appears on the screen,
so be sure you wipe out al"l unwanted Letters by typing a
sBace ove r t,hem .

EAS I ER ENTRY OE' SOURCE PROGRAI.{S ;

Nol* let B s try an eas ier way to enter source lines. First
yeur prCIgrarn on a di sk by typi ngsave the latest versi.on of

SAVE NOISY again. Then ty
progEarn frsm memory. (I*

ItNEhirr to erase the source
stilI rrn the disk).

pe
is

Now ho Ld down the CTRL key { n*CTRt t' {rxeans "c#n Lr o I t' } , and
type the letter I. We catrl that hyping "contrcL-Itt" Look
at ti:e screen " You will see ttrat, the Apple pr inted "190A" ,and the cursor is blinking afLer Lhat" Type "control-Ifragainu and you wilL see the cursor move over about 7
character positions.
Whenever you type "control-f 'u inside a line (beyond
margin), the curs$r moves to the rr*xt rab st.rp" P1
Lhis a l"itti.e, and ysu r*rill" find ttiat the tai> stops
niceiy with Lhe s$urce program coJ-umn form&k"

the left
ay with
line up

After enter ing a l ine end typing RETURN o the nexb C?Rt*I
*r:t*mlatica). I"y g*nerates the next l-i.r'le numh*r for yeu,

Why dcn I t you try kypi ng in the t{*I SY prCIqram aga i n, wi. t"tr
t!:re help of Lhe t'cont,r*L-fBt key? Y*ut11 find t,hak masterinE
th* t'control*I** fun*LiE:n vsill s&ve y*u a }*t *f time when
ys'Lr wr i t* ari<tr ed i fl pE,3g x stl1s .

Start by t:'ping UnNEW'u, t* insure Lhet thr*re &r** rtc
progrerrt l-inr;s I"eft ov{*r fr*m si}rfis pr4iv'ious wi:rk.*

stray

Then type in tl:e pr*q r:arffi *Se i i: , t[: r s t imc* us i *,;l rhe i:TftL -I
ku*y to Eeneratr* tt-ra i * ne ni:m1:*E s * T. i:* r$ge;*+111 E,je i r: u anCo'q0btr'** ?he pE:r,:gr#!yr str*r-rl* '"s*rk j*xt iik'* tt rJi* *.he first
r.ime* Stcp i.t hy pr,*nsi*i; **E;:E:SfrT'u*

i.'iith tl:is i:ria*f tntr':*irrti**r yoi.i sh*r;LtJ iii-:+; b* ;:*artry t*r'i r'' io*-'q tkr* f *i i,:"'*,ir*T *h*pi:*H-,$* ii';!.,r k",.)i,: iilii{tit' *n*}: s}*i!,"--4.; ! !. & 3I (".-,,

{:*y*rno*r';'-t r}f f e*L*re* u i}il{:f,1- i"irl.*r:t ",-;{ ll-, , t. lirrt i I y{:lt-l tris} t-:.,
,: ndi*-r * r: * nd wh,* t- i i,i rl* r:ir)*ri .i ft i4 .

:--.i, ii

SeetiOn 3. 4 SOURCE PROGRAMS

Source programs are entered a line at a time, with a line
number identifying each line. The line numbers run from A
through 9999. The automatic line numbering and the RENUI',IBER
command use default line numbers from Lg6g through 9999.
Source prograrn lines are kept sorted in line-number order.
The numbers are used for editing purpos€sr just as in
BASTC.

A blank must always follow the line number. After the blank
there are four fields of information: the labe1 , opcode,
operand, and eomrnent fiel"ds. Fields must be separated by at
Ieast one blank. Lines may be up to 248 characters long.

AUTOMAT IC LI NE NUMBERI NG

You may type the line number yourself , or use the two means
for automatic line number generation.
The first method is really semi-automatic, beeause you type
a eontrol-I to Eet the next line number. Any time the
cursor is at the beginning of a I ine (right after the
prompting colon), typing control-I eauses the next line
number to be generated.

Immediately after loading the Macro Assembler or typing
"NEw", the first line number generated is Lggg. The number
is displayed as four digits and a blank. The cursor is then
in posi tion for the first eharacter of a label , or the
asterisk denoting a comment line. If you type the control-I
in any other position than the beginning of a line, it
causes a tab to the next tab stop.
The second method is invoked by typing the "AUTO" eommaod,
with or without a starting line number. In the "AUTO" mode,
the next line number is automatically generated at the
beginning of every line. I f you don't want to use the line
number, or want one out of sequenee, you can baekspace to
the colon prompt and type a new line number or eommand, The
"AUTO" mode is terminated by the MAIIUAL command, by hittingttRESETt', or by any error message.

The next line number is the value of the previous line
number plus the eurrent inerement. The standard inerement
is LA, but you can change it to any integer value with the

3-17

I NC REI'{ENT command .

BUILT-IN TAB STOPS

Although the opcode, operand, and comment fields are noLrequired to begin in any particular column, it is neaLer toal ign them. TherefoEe r tab stops are included in Lhe Hacro
Assembl"er at columns L4, 22, 27 , and 32.
Control-I is the tab comrnand used by the l,,lacro Assembler.
Normally control-I generates enough spaces to move thecursor to the next tab stop. I f control- I is typed at thebeginning of a 1ine, the next line number and one space isgenerated. I f you are already past or at the last tab stop,control-I generates a single space "

Some printer interface cards with firmware drivers use
control"-I for setting vari.ous modes. If you wish to change
the tah character to avoid interfering with such a card, you
may do so * The ASCI I code for the tab character is stored
at location $Ogfrg. An alternative is to change the printer
interface control character, which is usually stored at
$06F8+sLot* "

Space is reserved insi.de the [,,lacro Assembler for a tota]" of
f ive tab stops. They are stored in locations $ogf6 through
$ngl4, as column numbers. You rnay change thern if you wish.
I f yorl want f ewer than f i ve tab stops, set the remaining
oRes to zerCI "

For the $3ggg (no language card) version of the l.lacro
Assembl-er n the tab character code is at $f g 6T , and the tab
stops are at $fgLg-$3914.

L&BEI TT K]LD;

The labe1 f ield may be lef t biarlk, or may contain a label .
There are f,hrree types of label s used in the l,[acro
Assemi:1er; ncrrnal labels, locaL labels, and private
label"s. The f i rst e haEacter of the label rnust be in the
second <:*l"rlmn aft,er the line number,

1"S6# STAitT - HERE { norma} l"abeI }
1#1"*i "?3 {local label}

3* 18

LqZg I Lz (private labe1)

You may not use a label which corresponds to one
of the 69ggg register names. These ttreserved" labels are
D0, Dl, D2, D3, D4, D5, D5, D7, A6, A1, A2, A3, A4, A5, A6,
A7, CCR, SR, US P and PC .

Normal Labels: Used to name places in your program to
I as cons tants and var i ables .which you wi 1 I branch r ds wel

Normal labels may be up to 32 eharacters long. The first
character must be a letter. Subsequent characters may be
letters, digitsr or the period character ("""). The period
i s use f ul f or mak i ng 1"ong labe ls readable . For example , a
subroutine to extract the next charaeter from a buffer might
be named r t'GET.NEXT.CHAR.FRoM.BUFEER'f .

The standard tab stops assume your labe1s will be six or
fewer eharacter s long . However , sinee the assembler i s
relatively free*formaL, you may type any length label
followed by a blank and the opcode, operand, and eomment
fields. Or, if you wish, you may type the long label on a
line all by itself. In this form, the label is assigned the
eurrent value of the locatisn counter , j ust as i f you had
appended " . EQ * rr to the Ii ne .

laTg . oR gLggg
LqLg *
Lg20 souRcE . Por NTER . EQ $4 g
Lfr3g DESTTN. POTNTER .EQ $aa
L64g TRANSFER.COUNT .EQ $48
L05g *
Lg6A TRANSFER. BLOCK " OF. IONG .WORDS
167g MOVE.L SOURCE.POINTERTAl
LABA HOVE"L DESTTN. POINTERTA2
Lgg0 MOVE.W TRANSFER. COUNT , D0
LLgg LooP MovE.L (AI)+r(A2)+
1110 DBF D0, LOOP

Local Labels: Used to name branch points within a module.
The main purpose for local labels is to make programs more
readable by reducing the number of label names you must
i nvent. As a s ide effeet , loca I labe1 s save cons iderable
space in the symbol table dur ing assernbly i they only requ i re
two bytes each. The use of local labels also encourages
structured programming habits.
Loeal labels have a period as the f irst ctraracter, followed
by one or two digi ts. Any label f rom tt .gtt through rr.99 rr may
be used. (Please note that these are label names, not

3-r9

decimal fractions. Consequentl"y, th* lal:ei ",I'o is Lreatedas exactly equivalent to the lahetr *'.#1"; in f,acLo it will"be listed in Lhe symbcll- table l-isti"ng as ",ff1".)
A local label's location is internalS"y def ined as a distance
f rom a normal labe1 which precedes i"t in the source program.
(There must be one before it. or you r*i11" qet aR error
message ") The local label must be R* more than 255 bytes
away f rom a preced i ng normai- labe1 .

S ince each set of locatr labels is esscci ated wi th aparticular norrnal labe)-, you rnay re-use th* sarfle local
labels as often as yCIu t*ish"
Here are turo routines wikhin the sarne ccde seqnrent which use
the Iocal labe1s fr.Irr and il c 2il twice " This is perf ectly
acceptable because of the intetrvening normal labe1,
',ANOTHER. NORMAL . LABEL '' "

Lggg
Lgg2
Lfig5
Lgg6
LfrLfr
Lg2g
Lg3fi
Lg 4g
Lil5g
]-tr6S
L&7 #
29fi#
2#fi2
2gLfr
2629
2&3fi
2g 4fr
zfr5fr
2#6s

. oR $Lggg*
NORMAL. LABEL
*

CLR Dg
.1 I'{OVE *$ZfigfirAfr

l4ovE *$Lgfr$uD1
* ? t{OvE Da, (A6i +

ilBEQ SLr"2
BRA .}*

ANOTH ER " NOR},IAL " {,ABEL
*

r.lovE #$1fifi nn4
"l 'rsr-B $c03#t"lovE D4 , D5
.2 DBF D5 , .2DBF D4, " I

RTS

Th* a$sembl"ir Listing shrt:ws h*rx Lh*ss3].4*":;r i i,:*b*1s are
representeC in the *ymnoI LehS *;

: ASM

I##g -*ft
1tr#z *
I##5 NOH$&t " L&miit,
1"fr96 *

#fiUilT#&g* 4?4# t#I# {*ri;it
fi{dfiglfi#2* 36?C 2##* }#?# "1 milvH

t;1#*1#

affi

3*2{#

{$$;'&fi#,p'{*

aag 6Lga6 -qgggLggA-
gaa0Lg6c-
ggsgLsLs -

lgag
rFFC

frLg0
g6sg

2629
Zfr39

FFFE 2g4g
FFF 2 2659

2669

323C
3qcg
57C9
60F a

L03g MOVE *$r gg0, DI
Lg4g .2 MOVE D6, (A0)+
Lg5g DBEQ DL | .2
Lg6g BRA .1
LgTg *
Zwgg ANOTHER. NORI'{AL. LABEL
2gg2 *
ZgLg MOVE # $1 Ag ,D4sg00LsL2*

gfiaglg 1 6 -
0gggL6 I A-gg0gLglc-
ggggLa I E -gqgCILs22-
ag0sLg26 -

3B3C
4A39
cg3g
3A04
51CD
51CC
4875

$cs3sI TST.B
MOVE
DBF
DBT'
RTS

D4 , D5
D5, .2
D4, , I

2

SYMBOL TABLE

6ggglg12- ANOTHER. NOR}.IAI . LAtsEL
.gL=AUggLgL6 , .02=frggg t0lEg6ggLgAg. NORMAL. LABEL
. TL=fr6ggLAg2, . 02=fr66fiL69A

gggg ERRORS IN ASSEHBLY

Private LabeIs: Used within macros as braneh points.
are maintained in a separate symbol table,

and henee do not inter fere wi th ei ther normal Labels or
local labels. Eaeh pr ivate label is associated with a
particular invocation of a rnaeEo r so that the assembler
treats the recurrence of the same labeL number as a unique
labeI. Private labels are diseussed in more depth in
Section 3.Br oo Placros.

OPCODE FI ELD:

The opcode field contains a machine language operation eode,
a macro name t ox an assembler directive. If you are using
the tab stops, the opcode field normally starts in eolumn
14 . However , opeodes may beg in in any eolumn after at least
one blank from a label or at least, two blanks from a line
number.

The I',!acro Assembler uses the standard 68690 instruetion
mnemonics as defined by Motorola. Macros and assembler
directives are discussed later in this chapter.

3-21

OPERAND FI ELD:

The operand f ield further speci f ies the action of the opccrjefield. This field may contain register expressions,
arithmetic expressions, variables, and constants in various
combinations.
Operand expressions have a range of 32 bits. This allows
for the 16 megabyte address range of the 68906, and for
32-bit constants. Although |Bggfr addresses are represented
by 24 bi ts, and 68ggg addresses are represented by 2g bi ts,
the assembler accepts addresses of 32 bits without an
error. Future versions of the 6|ggg wilI probably be able
to use a full 32 bit address.
You may put as many spaces as you want between the opcode
and operand fields. Howev€Er there may not be any spaces in
the operand f ield. I f there are two operands, they rnust be
sepa r a ted b'y a comma .

The fol Iawing program code demonstrates some operand
examples:

gsggfigg2-
sgflgggg6 -
ggsfrLfius-
sggslsg 4-
gfrgfrLss8-
frggfiLfr ffA-
ggggLg fi E-
ggfrgLfr I s -

2g3B sggB
223C gssg
gggS
IBF2 BgI5
4843
4875

Tgga
LgLg
LA2s
Lg3A
Lg 4g
LgSg

Lg6g
Lg7 g
LgSg
Lggfr

"0R $LWgg*__
TWO . EQ $esrx .ilQ $0
* __

t{ovE"L Two+sIxrDg

I.{OVE.L #tWO+SIXrDl
MOVE"B $1S (h2,A3l, (44)+
rRAP * 3
RTE

SYI.,IBOt TABTE

gfrggfrgg6- srxgilgggfifrZ* TWo

In line L&fifi F the operand is the constant, $Lfifrfi, a value far
the .OR direct,ive. Lines LgZfi and LTSB def ine the r,'ariables
TWG and Sllts anttr the CIperar:d field specj.fies the nuffieric
values of these var iabl*s *

3*?2

The instruction at l-ine Lgsg says to move the data frommemory loeation B into data register Dg. Location g isdefined as the sum of two variables, TWO and SIX.
The instruction at line
data regi ster Dl .

Lg6g says to move the number 8 into

Line LgTg shows a fancy addressing mode provided by the58ggg. Line LfrBA contains the opcode TRAP, whose operand isa number (*) from 0 to $F. And finally, line L6gg containsan inslruction ulhich does not requi re an operand, RTE
(Return F rom Except i on i .

COMI-{ENT F I ELrD:

Comments are separated frorn the operand field by at least
one blank. Tab stops are set at columns 27 and 32 for the
eomment field. In the assernbly listing, tabbed commentsbegin in eolumn 51.

\- COM},TENT L I NES ;

Full lines of comments may be entered by typing an asterisk
(*) in the f irst column of the label f ield. This kind of
comment is useful in separating various routines from eachothern and labelling their functions. It is analogous tothe REM statement in BAS IC.
[,ines which are connpletely blank are also treated as
commen ts .

ESCAPE-L:

A special comment line is built into the Maero Assembler.
I f the cursor is one space to the r ight of a line number ,typing ESC-L generates a built-in eomment 1ine. Thisconsists of an asterisk (*) followed by a line of dasheswhich just fill cne line on the 40 column sereen. The
comment l ine is comrnonly used to set of f blocks of comments.

3-23

If a comment line of dashes is not your favorite, you may
change the repeated character" The ASCII code of the
character is kept at $ogtS ($fgf5) . i t is currently $AD,
which is ASCII for [-rt.

I f you type ESC-L at the beginning of a line (before a line
nurnber) r it has a dif ferent meani.ng. In this case it causes
the fi"rst six characters of the line on the screen to be
changed to ttLOAD ". Then the rest of the li ne i s read f rom
the screen, and issued as a LOAD command. with this feature
you can LOAD a fitre simply by typing CATALOG,
ESC-rrr1...rrL

CURSOR CONTROLS:

The standard Apple I T se reen ed i t i. ng tool s are suppor ted by
the Hacro Assernbler. You can edit lines of assembly
language source in the same way that. you edi t iines in your
tr nteger BAS IC or Applesoft program "

Whether or not you have the Autostar t ROI'I , You rnay use the
new Apple standard cursor movement cent'rols: Escape-I r -J,*Kr and -Fl. The older Escape-A through Escape-f and
Escape-G are aLso supported by the Flacr* Assembler.

.3*24

Section 3.5 COMD,IANDS

You will use three types of commands in the l"lacro
Assembler : Assernbler commands, DOS Commands r and Moni tor
Commands. The Assembler Commands allow you to edit,
assemble, and execute your assembly language programs. tr,tost
App1e I'lonitor and DOS commands are also reeognized.
Commands are typed immediately after the prompt symbol,
which is a colon (:) .

ASSEMBTER COMI-{ANDS

There are 29 eommands reeognized by the l,lacro Assembler.
Assembler Commands may be abbreviated
three letters. All of the letters of
do type are ehecked for spel I i Dg .

by
the

typing the first
command names you

(Two DOS Commands, tOAD and SAVE, are used so frequently
that they might be ttrought of as Assembler commands.
However , they are DOS commands, and as sueh eannot be
abbreviated to the fi rst three letters.)

The 29 Assembler Commands can be eonveniently grouped into
source eommands, editing eommands, listing eontrol eommands,
69ggg execution commands, object commands and miscellaneous
command s .

Gr oup Command s

Source

Editing

Listing
Exeeute 6BggA

object
l.{iscellaneous

NEW, IOAD, SAVE, TEXT, HIDE, f"lERGE,
RESTORE

EDIT, COPY, LIST, EIND, REPLACE,
DELETE, RENUT'{BER

st,ow, FAsT, PRT, (")

QON, DBUG

ASl,1, MGO, VAL , SYI,IBOLS

AUTO, MANUAL, INCRE},TENT, PIEMORY, MNTR,
RST, USR

3-25

SOURCE COMI.,IANDS: NEW, LOAD , SAVE, TEXT,
HIDE, I"lER.GE, RESTORE

NEW Command: :NEW

Deletes the current source text from memory and restarts the
l,lacro Assembler " CIears the screen r wr i tes t'S-C I'{ACRO
ASSEMBLER 68fi9fr Vl .grr on the top line r restarts the
automat i c li ne number i ng at Lggg and wa i ts f or you t,o type a
source I i ne or another command "

LOAD Cornmand: : LOAD
: LOAD fi fename

Deletes the current source program (unless it is "hiddennovrith the HIDE command), and t,hen reads in a new one frorn
cassette tape. The [,OAD command works exactly the sarne es
the l-oad command in Integer BASIC or Applescft.
If you type a fifename
i ntercepted by DOS and
instead of tape.

LOAD cor$masd, it
prCIgram is loaded

after thea source
is
frqm disk

SAVE Command: : SAVE
: SAVE fi lename

Wr i tes the source prCIgtram currently in memory to cassette
tape, tr L urorks {}xa*tly khe sarne as the SAVE comman* in
I nteger BAS IC 0E Applesof t -

: ttlAD
: T,OAD EANANA

I f yeu Lype a f i lename after the
i rrtetrcepted by iiOS to wr i te the
raLher than tape" A saved file
di.i:ectory &s * *yB* *1re fil-e.

Load from tape)
Load disk file named .'BANANA")

"{;
AVE

sou r ce
command, it is
prograrn CIn di sk

tn the disk

'3 *26

appea r s

: SAVE
: SAVE BANANA

(save on
(save on

ta
di

pe)
sk fi le "BANANA")

TEXT Command :TEXT filename
:TEXT* filename
: TEXT / fi lename

Saves the source program to di sk as a DOS tex t f i le , so i tcan be edited with another text editor. There are threeforms of th i s eommand :

TEXT writes the lines with no line number. This is veryhandy for bu i ld i ng EXEC f i les for use wi th DOS , BAS IC t otany general use. Text files which are created this way canbe read baek into the Maero Assembler by turning the AUTOline numbers on (see AUTO command), and using the EXEC
command.

TEXT* writes lines with line numbersr exactly as they appearon the screen. These fi Ies can be EXECed into Applesoft r orbaek into the I'laero Assembler.
TEXT/ writes the lines with a control-I in plaee of the linenumber. You ean keep disk files of often-used routines thatean be EXECed into a program wherever they are needed. Theeontrol-I at the beginning of each line causes a line numberto be genera ted when the li ne i s read by the l,lacro
Assembler.

: TEXT ROUT I NE (wr i tes the cur rent source
program to a text fi le
named ROUTINE I with no line numbers)

:TEXT* ROUTINE (writes the eurrent source
program to a text file
named ROUTINE, with line numbers)

: TEXT / ROUT I NE (wr i tes the eur rent source
program on a text fi le
named ROUTINE, wi th eontrol-I ' sin place of line numbers)

3-27

H I DE and ['{ERGE Commands : :HIDE
: I4ERGE

These two cCImmands, used together v*ith the LOAD command,
al low you to jo i"n a program f rorn di sk or t.ape to a progrern
that i s aI ready in memsry, To remi nd yau tha t you are
HIDE-i[9, the prompt symbol changes frcm EI-rt tc rtgr[. AfterHIDE-ing a program u you can LOAD another one f,rom disk or
tape with the LGAD command * Then you type I',IERGE Lo join the
trEo prcgrams together "

Af ter this sequence of commands is executed, the prograrn
r.rhich was al ready in memory f ol lows the program j ustLOADed- f f the line numbers of, the merged program.s are n*rcorrecL, you strould use RfiNUMtsER t* a$s ign ne!, ones.
For example, suppose that we hav* tqio sCIurce programs on thedisk named "SRCONEn' and "SRCTWO*'o We war-rt to joirr thern
together so that ntSRCONEil precedes 'rsRCT!^;O!'. Here are thetwo pr og r arns :

; LOA* SRCONE
: [,I ST

Lfrg & * PROGRAM E;I}FTBER ONE
LULB MAIN BSR SUtsROUTINE
Lff?g RTS

: [.oAL] S I{CTWO
:LIST

1fi##
l_916
1fi2fi
1fi30
1fi4#

* SUBROUTINH'TO DO SCMET}.IISG
SUBROIJ? I NE

HOVE Br-,AH " BLAH " BLAFi , D#
M*VE t)fi, SCIt{EwriERE
TTT S

Nors let!s HIDE the seurce of SRCTW*r LO&"* tr: the source frr;m
SRCCINE, and MERGE t_hem together -

3*28

: HIDE
H:LIST
H: LOAD SRCONE
H:LIST

H: MERGE

:LIST

(Note that nothing lists, beeause the
source has been hidden).

Lsgg
LgLg
LA2A
Lg0g
LALg
Lg2A
LA30
LA 4g

* PROGRAI.,I NUI'IBER ONE
MAIN BSR SUBROUTINE

RTS* SUBROUTINE TO DO SOMETHING
SUBROUTINE

r"lovE BLAH . BtAH . BIAII ,D6
I.,IOVE DA,SOI'{EWHERE
RTS

You can see that both programs are no$, in memoty,
l ine numbers are not in sequence. RENUI-{BER f i xes
numbe r s .

: RENUT-,IBER
: LIST

LAgg * PROGRA},I NUI'{BER ONE
LgLg MAIN BSR SUBROUTINE
Lgzq RTS
Lg3g * SUBROUT I NE TO DO SOI.,IETH I NG
L64A SUBROUTINE
L65A l.lovE BtAH . BLAH . BIAH ,DALg6g MovE Da , SOI"IEWHERE
Lgl g RTS

RESTORE Command : RESTORE

bu t the
the line

Restores the
while inside

root source pr
an "ineludedtt

ogram i f an assembly is aborted
module.

The "root source program" i s the source program that i s in
rnemory at the time you issue the ASM command. If this

3-29

Lgqg * PROGRAI.{ NUMBER ONE
LgLg MAIN BSR SUBROUTINE
l02g RTS

source program uses the . IN directive to include additionalsource fi fes r it is possible that assembly might be abcrted
whi Ie the ttroot" program is "hidden". An assembty may be
aborted either manually by typing the RETURN key whi le theassembly is in progressr or automatically due to an error in
the source program.

If the assembly is aborted during the time that the root
program is hidden, the prompt character changes from 'r.!rtt I : !r . The RESTORE command resets the rnemory po inters so
that the included fi le is released, and the root program
no longer hidden. The prompt character then changes backtr:rr.

to
is
to

You do not have to use the RESTORE command after an aborted
assembly unless you wish to get back to the root source
program for editing purposes. If you type the ASI'1 cornmand,
the assembler automatical 1y RESTOREs before starting the
assembly.

If an assembly aborts
may correct the source
appropriate file, and

due to an error in a source liner you
line, SAVE the module on the

type ASI"1 to restart the assembly.

EDITING COI'{},IANDS LIST, FIND, EDIT, REPLACE
DELETE, RENUMBBR, COPY

The editor in the Macro Assembler combines the Apple screen
editing features with a BASIC-like line editor. Source
programs are entered and edited in almost exactly the same
way you r*ould enter and ed i t an I nteger BAS IC or Applesof t
prog r am .

Editing commands aIlow you to list your source program,
delete I ines, search for lines, replace portions of selected
lines, renumber lines, and copy blocks of lines from one
location to another. There is also a powerful EDIT command
which allows you to edit characters within a line.

RANGE PARAFTETERS:

I*{ost editing commands (LIST, FIND, EDIT, REPLACE, AND
DELETE) can use range parameters to operate on just part of
the program. A range parameter may be written with one or

3*30

two line numbersr or in most cases it. may be omitted. rfthere are two line numbersr separate thern with a comma. If'there i.s only one line number, it may stand aloh€r or with a
comma; the eomma may precede or follow the line number.
Each of these f i ve poss ible ar rangements has a speci f ic
mean i ng :

(no number)

f
,*

*

Specifies the entire source program.

Specifies the entire source program"

Specifies line number #.

Specifies lines from the beginning
of the souree program through #.

Specifies lines from * through the
end of the source program.

Specifies lines from #f through *2*1,f2

Here are some spec i f i c examples :

: LIST
: LI ST 2ggg
: DEL 2000 ,3AgA
: EDIT 2ggg ,

: FIND ,2ggg

(lists a1I lines)
(list line 20gg only)
(de letes 1i nes f rom zgqg4gAA)(edits all lines from 2ggg througtr
the end of the program)
(finds all lines from the beginning
of the program through line 2tgg)

You can also use a period (.) to mean "the last line
entered" . The per iod r ot "dot" , is defined as the number ofthe last line entered or deleted from the souree program.

STRING PARAI"IETERS:

Some commands (LIST, FIND, EDIT, AND REPLACE) can also use a
seareh str ing parameter to operate only on lines containing
that string. The search string is of the form *st,ring*,
where (*) is a del imiter of your choice. The del imiter canbe any printing character that does not occur in your searchstring, except comma (r), period (.), or a digit (,9-g).
Some examples:

3-31

f

You can use a wildcard character in search strings if you
want to operate on atl lines containing partial matches to
your search str iag. The standard wi ldcard character is
contrcl-W* You have to first type a control-O, and then a
control*W. The control-O character is an override tc allovr
the insertion of conLrol characters in commands and source
1ines. The control-W appears on the screen in i.nverse
v ideo . For exarnple :

;LrsT /courl
:EDrT "/DESTl'

?ASWTA ?

MOVE

MOVE

l',lOVE

(lists all lirr*rs containi.ng COUT)
(edits all lines containing /DEST)

(Pretend that the trlgtr is a controf-W)

AS . DA'q}, D4

AS'. DATA ,D6

B4.S KET4 ,D2

:FIND

LLzfi

L2gfr

LIST COI'IMAND: :LIST
: LI ST range
:t-IST *string*
: LIST *str ing* range

F I ND COI.{T,IAND : :FIND
: FIND range
:FIND *string*'
: FIND * str ing* range

Actually, FIND is just an alternate name for the LIST
command" Many people find it more natural to use LIST with
li.ne number ranges and FIND r*ith a search stringn but either
command vrorks wi th ei ther parameter (or both parameters i) "

Both FIND and [,IST list a single line, & range of li.nes, or
an entire source program. If you specify & search string,
only those ti.nes which match the string ar* List'ed.

While a program or range of lines is }isting, Yau can
momenlar i }"y stop tl:e 1i sting by hi t ting the space bar .
Tapping the space bar again restar b* the L isting, Ycu can
abort bhe listing by hitting the RET'URt"I key' The SLOW and
FAS'f commands allow you to control lhe li.sLing speed. If

3-32

you list a single line, it is displayed onposition which makes it easy to edit using
editing tcols "

the screen in a
the Apple screen

:tIST
:LIST L236
:LIST 123fi,2899
: LI ST L23g I
: LI ST tL23g
:FrND /ASClt/

(list entire program)
(list only Iine 1230)
(list lines L23g through 2B9g)
(list al-I lines from L236 through end)
(list all- lines f rom beginning through
L236 \(list all- lines containing the string
"ASCrrrt)(list all lines through LZgfr that
contain the string .'BI"):FrND rrBrrr rLZgg

EDIT COMI-IAND: :EDIT
: EDIT range
: EDIT *str ing*
: EDIT *str ing* range

Allows easy editing of program lines. Since this command is
typed so f reguen.tly, a short form is provided. Instead of
typing "EDIT'rr you just type control-E, and the word, "EDIT'lmaEically appears on the screen. You fi 1 1 in the line
number , and proceed to ed i t the I i ne .

If you specify no range or string, the whole souree program,
one line after another , is displayed for edi ting. I f you
*qpecify a range, those lines in the range are displayed for
editing. If you specify a search string, only those lines
matching the string are displayed.
EDIT displays a line for editing by printing the line,
clear ing from the end of the I ine to the bottom of the
screen, and plaeing the cursor at the beginning of the label
field. You can edit the line with Lhe following commands:

control-e l'love eursor back to beginning of the
label f ield.

control-D
eontrol Fx

Delete character under cursor.
l'love cursor to next occurence of rrxrr
in line (if any) . You may type any
character you wish for ttx".

Move cursor l-eft.eontrol-H

3-33

(Ief t arrow)

control-I

control-L

control-1.,1
(RETURN)

controt-N
control-O

control-Q

control*R

control-T
controtr-U
controL-X
control-8

Begin insertion mode; characters areinserted unti I another control
character is typed.
Store current edited line and startediting the next line.
Store the edited line " The complete line
is stored regardless of the cursor posi tion.
l'love cursor to end of line.
Begin insertion mode, but allow nextcharacter typed to be inserted even ifit is a conLrol-character
Finish edit mode, chopping off all
characters from cursor to ehd of I i ne "

Restore the or iginal line without
leav i ng ed i t-mode .

Move cursor to next tab stop.
(right arrohr) Move cursor right.
Abort the EDIT command.

Erase from cursor to end of line
without leaving edi t-mode.

REPLACE
COI"IMAND;

: REPTACE
; REPLACE
: REPLACE
: REPTACE

* s-str i ng* r- str i ng**s-string*r*string*
* s-str i ng* r- str i ng**s-str ing* r-str ing*

range
options
range opt i ons

NOTE; "s-string'* stands for search string; t,r-strinE" standsfon replacement string.
Searches for and replaces character str ings in your source
code. REPIACE operates on all" f ields, f rsm the f i rst
character in the labe1 field through the end of each line.
The search can i.nctrude ttre entire prograrnr or it can be
restricted to a range of l"ine numl:ers by specifying whi"chlines atre to be searched {range parameter} .

.i-34

When REPLACE finds your search string it prints the line
with the matching string shown in inverse vitieo* The
program then asks, "REPtACB?"r and waits fclr yCIu to type
tty rt, "Ntt , or some other eharacter . I f you type rty tr the
eorrected line is listed, and thre search continues. I f you
type ,61tr it simpf y cCIntinues searching. I f you type some
other character , the REPLACE command terminates.
There are two options which may be selected hry appending the
letters rrprt CIr rr13rr to ttre connrnand line. The letter ttgtt on
the end of the command line eauses automatic operation,
without the prompting at each replacement" The letter rr1;rr

means ignore the di" f f erence between upper and lor*er case
letters.
I t is possible to replace more than one malching str ing in
the same source I i ne .

You may use wi ldcard charaeters in the search str ing. The
enti re matching str ing is replaced by the replaeement
str ing. Do not put any wi Ldcard characters in the
replacement slring.

DELETE COI"IMAND: : DELETE range

Deletes a line or range of lines from your source program,
j ust as in BAS IC. Another hlay to delete a single l ine is to
type its line numher followed immediately by a RETURNT or by
a spaee and RETURN.

DETETE must be followed by a range parameter and cannot have
a search str ing parameter .

: DEt*** SYNTAX ERROR
: DEL L23A
:DEt L23A,2896
: DEL L23O ,

(doesn't work)

(Warning: DETETE followed by
This eornmand will del-ete a f

a file naroe is a DOS command.
ile from your disk!)

only line Lz3fij
I i nes L23g thr ough 289 A I
al 1 I i nes from L23g Lhrough

all Iines from beginning
L230 |entire prograrn)

: DEL

: DEL

(delete
(delete
(delete
end)(oelete
through
(delete

, l23g

3-35

REN UT.,IBER COT.,IMAND : : RENUMBER
I REN UI'{BE R ba se
: RENUMBER base, inc
: RENUI,{BER ba s€ , i rrc r sta r t

Renumbers all or part of the line" in your source program
with the specified starting line number and increment.
There are three CIptional pararneters f or speci fying the l ine
number to assign the f irst renuml:ered line (base) r the
i ncrement, and the place in your program to beg in
renumbering tstart), 'trhere are f*ur possible f,orms of the
command :

: REN Renurnber the whole source program:
BASE=I ggg, INC=L6 , START=O

:REN # Renumber the whole source program:
BASE=I , TNC=Lfr, START=O

:REN t+tr{+2 R.enumber the whole source program:
BASE=* I , INC =*2, START=0

:REN #1r*2r{}: Renumber from line *3 through the
CNd: BASE=*I, INC=*2, START=*3

The last form is useful for opening up a 'rhole" in the line
numbers fcr entering a new section of cCItl*.

:LIST
Letfrfr * LITTLE RET{UI-IBER EXA}lPLE
1gO5 SAMPT,E
Tgg6
t0r0

m*vE D4, D5
MOVE D7 F D2
RTS

: REN LI I.€B E R
:LIST
1fiSff * tTTTtE RET'JUI./tBER EXAI"lPLH
LfiLA SAMPLE l4*VE D4f D5
L'nzfi HOVE DTf D?
Lfr3 g }?T S

3-36

: RENUI.,lBER Lgg
:LISTgLgg * LITTLEgLLg SAMPLE
gL2g
gL3g

RENUMBER EXAMPLE
MOVE D4, D5
MOVE D7 rDz
RTS

: RENUMBER 2AgA ,4
:LIST
2ggg * LITTLE RENUI.,IBER EXAMPLE
2qg4 SAMPLE MOVE D4, D5
20a8 MOVE D7,D2
26L2 RTS

: RENUMBER 3gA0 ,L0 ,2gg|
:LIST
2$gg * LITTLE RENUI-{BER EXA},IPLE
2AA4 SAMPLE MOVE D4 , D5
3gga MOVE D7 rDz3O1g RTS

COPY COMMAND: : COPY range , target

Copies a range of lines from one place in the program toanother . A copy of all the lines in the range speci fied isplaced j ust before the target 1 ine .
If the target line does not exist, the lines within rangeare eopied where the target I ine should have been. I f thetarget is line 9999, and there is no li.ne gggg, the copiedlines are placed at the end of the souree program.
COPY does not delete the original section or renumber thecopyr so this command should be followed immediately by a
RENUMBER command.

: tI ST
Lgfrg * LITTLE COPY EXAMPLE
LAgs SAMPLE IV1OVE D3, D4Lgg6 MOVE D7 rDzLALO RTS

3 -37

: coPY Lggs , I gg6 , gggg
:LIST
Lggg * LITTLE COPY EXAMPLE
Lgg5 SAI"IPLE },IOVE D3, D4
Lgg6 MOVE D7,D2
LgLg RTS
Lggs SAPIPLE I,,IOVE D3, D4
Lgg6 MOVE D7,D2

: RENU}{BER
:tIST
Lggg * LITTLE COPY EXAI"IPLE

:coPY Lgzfi,Lg4g,LgLg
:LIST

LrLA SAMPLE
Lg2g
Lg3s
LAAW SA},IPLE
Lg5g

Lggg *
Ls2A
Lg3g
Lg4g SAI-{PLE
IALA SA}lPLE
LA2g
LsSg
LA t SAMPLE
Lg5g

},lOVE
I'{OVE
RTS
MOVE
MOVE

D3rD4
D7 ,D2

D3, D4
D7 ,D2

LITTLE COPY EXAMPLE
MOVE
RTS
I.{OVE
MOVE
MOVE
RTS
MOVE
t'10v8

D7 ,D2

D3rD4
D3, D4
D7 rDZ

D3, D4
D7 rD?

LISTING CONTROL COM},TANDS : rAsT , st,ow, PRT ,

Thre listinE control commands are used to control the speed
of display on the screen, and to control printing of
listings on other devices. One special comrnand allohrs
send i ng setup cont,ro I character s to your pr i nter .

FAST and SLOW ccmmands: : FAST
: SLOW

FAST sets the I i sting speed to the normal speed, which is

3-38

too f ast for most people to read. When you start the I'{aero
Assembler, it is set to the FAST mode. If you abort a
listing by hitting the RETURN key, the system returns to the
EAST mode.

SLOW reduces the listing speed so that you can read it as it
goes by on your sereen.

In both the FAST and SLOW mod€sr you can momentarily stop
the I i sting by tapping the space bar (or any other key
except RETURN). You can abort the listing by typing the
RETURN key. When the listing is stopped r Pressing two keys
at the same time causes one additional line Lo be listed.

PRT Command: : PRT

Provides a "hook" for a user-supplied printer driver. I f
you have and Apple parallel or serial printer board, the
usual PR* slot wi 11 activate your pr inter . I f you have a
printer driven through the game port, or an interfaee board
which requires speeial handling r You can use the PRT command
to turn it ono If you don't need it for a printer, PRT can
serve as a seeond UsR command.

PRT executes a JsR $oggg ($gg g9') , where you can Put a JMP to
your printer driver. Remember that this driver is written
in 65A2 code, not 68g0g code.

(") Command: :ttstring

Sends the speci fied str ing to the currently seleeted output
device. I f your pr inter is currently selected, You can send
contro l-codes to i t .
Remember that in order to enter a control-character on an
input 1 ine r you type the control-O (over r ide) fol lowed by
the desired character.
For example , i f you are us i ng an It'lX-8 0 pr inter and wi sh to
set the ital ics mode, type:

"eontrol-O (ESC) 4

3-39

EXECUTE 68fi99 CODE CO},II'{ANDS: QON, DBUG

These commands start up the Q-68 Board.

QON Command: : QON

This command executes a CALL to Apple II location $309. Itis assumed that the Q-68.STARTUP.BIN program has been loaded
at address $399. (This is done automatically when the
system is booted with the QPAK-58 system disk) .

The routine at 930e turns on the Q-58 board, and then
returns to the cal ler , which in thi s case is the t"lacro
Assembler. The Macro Assembler continues to rLln af ter the
Q-68 board i s turned on .

Note that when you start the Q-58 board using "eON,,, your
68ggg prograrn must take care of instal I i ng the 6|ggg RESETvectors at $B 00 . See Chapter 2.

DBUG Command: : DBUG

Fires up the DEBUG
usually use t'DBUGrr
58fr99 code.

program in the Q-68 board . You wi t I
j ust af ter a succcessf ul" assembly of your

This command assumes that Q-58. STAR?UP.BIN is in mefirory at
$309 " The RESET vectors for starting up DEBUG are instal led
at $8#fi, the Q-68 card is tt-rrned oftr and a special" 6592,
routine is entered.
This 65g2 routine continuously checks for a CTL-B or CTL-Dc*mmend. Since the 65#2 is fully occupied r*ith this task,
i t cf oes not inter f ere wi th DEBUG 's use cf Lhe Apple I I
keyboa rd or tex t screen .

The "Q-68.STARTUrrr progEam is explained in Appendix D.

3*S8

OBJECT COMMANDS: ASt'{, I'{GO, VAL, SYtlBOLS

Object commands are used to assemble source programs intoobject programs, exeeute 6592 objeet programs, and to pr intthe value of label expressions after assembly.

ASM Command: : ASM

Initiates assernbly of your source program. The t"lacro
Assembler is a two-pass assembler. During the first pass itbuilds a symbol table with the def inition of every labelused in your program. During the second pass the assemblerstores objeet code into memory (or wr i tes i t on a di sk fi le)and produees an assembly Ii sting on the screen and /or .theprinter. At the end of the second pass all the labels andtheir values are listed in alphabetical order.
The assembly listing may be momentarily interrupted andrestarted by tapping the space bar. you may abort theassembly by typing the RETURN key. The assembly listing mayalso be controlled with the . LIST direetives, to pr int anypart of it or none at all.
I f any errors are deteeted in ei ther pass, they are pr intedalong with a copy of the offending line. Assembly normallyeontinues after an errot t so that you can catch as manyerrors as possible in one pass. If any errors are detected
dur ing pass one, pass two is not attempted . At the end ofassembly the total number of errors is printed. Theassembly error messages with their probable causes are
I i sted in Append i x B.

MGO Command: : MGO express i on

Begins exeeution of a 65fr2 objeet program. An expression orlabel name must follow the l,lGO command to define the plaeeto begin execution.
: [.,TGO BEG I N
: MGo S3Ag

(Start execution(Start execution
abel BEGIN)
36A)

at I
at $

3-41

The 6592 program can return to the l,,Iacro Assembler either byusing an rrRTSrr instructioo r by a 'rJMp $3Dg', (if DOs isactive), or by a',JI.,IP $ogg3r, ($3993). you may also abortyour program by hitting the RESET key. If your Apple hasthe Autostart ROM, you wi 11 come out in the assembler . I fyou come out in the monitor, type 3D0G to reenter theassembler.
This command is really designed for use with the 65g2Assembler from S-C Corp. Donrt try to jump to a 6ggggprogram with Mco--remember that the Applers 65g2 is runningthe assembler, and when it sees an MGO, it expects to findexecutable 6592 code at the '|MGO r address .

One use for MGO would be to directly access the variousentry points of the e-58. STARTUP.BIN program. See Appendix
D.

VAL Command: : VAL express ion

Evaluates any legal operand expression, and prints the valuein hexadecimal. It may be used to quickly convert decimal
numbers to hexadecimal, to determine the ASCII code for acharacter t ot to find the value of a label from the last
assembled program.

:VAt 12345
gg gg3g39
: VAL -2LB 4 6
FFFFAAAA
:VAL rX
gsggsg5S
: VAL LOOPA+3
ggggS4E

(ASCII value)

SYI.,IBOLS Command: : SY},IBOLS

Displays a copy of, the Symbo1 Table, just like the one that
is normally printed at the end of pass two of an assernbly"

3- 42

MISCELLANEOUS COMMANDS AUTO, l-lANUAL, INCREFIENT,
MEMORY , MNTR, RST, USR

The last seven commands do not fit into any other eategory.

AUTO Command: : AUTO
: AUTO *

Turns on automaLic line numbering mode. In this mode, a new
line number is automatically generated every time you end a
line. Lines are ended by typing RETURN, by backspacing over
the prompt symbol, or by typing control-X.
If AUTO is used without a parameter, the generated line
numbers start with the next number after the last line you
entered or deleted. The next number is formed by adding the
INCREMENT value. The inerement can be ehanged with the
I NCREI',IENT command .

AUTO followed by a line number starts the numbering at that
va1ue.

AUTO should be used when EXEC- ing in tex t fi les from another
source . Thi s $ray, you ean even use the Macro Assembler to
edit BASIC programs which have been listed into text fi les
(as long as you donrt need to renumber the BASIC line
numbers) .

You can type commands while in the AUTO mode by typing
backspaees to the beginning of the line (next to, not over,
the prompt) and then typing the I,IANUAL eommand.

The AUTO mode is also terminated by hitting RESET, or after
any error message.

MANUAL Command: : I'IANUAL

Terminates the automatic line number ing (AUTO) mode. To use
the MANUAL commaild, first baekspace over the line number,just to the right of the colon r and type I-,IANUAL (or simply
MAN).

3-43

INCRET.{ENT Command: : I NCREI',IENT numbe r

Sets the increment used for automatic line number generation(both control-I generated numbers and AUTO mode numbers).
The increment is normally LA, but you may set it to anyvalue between g and 9999 . (O f course r Elo increment of g
rnakes no sens€. Nei ther does a large value I ike 9999. Butyou can use them if you wisht)

: INC 5
: INC Lg

(set increment to 5)
(set incrernent to Lgl

I,IEMORY Command: : TI{EMORY

Displays the beginning and ending memory addresses of the
source program and the symbol table.

: ME},l

SOURCE PROGRAT'I:
SYI.{BOL TABLE:

$94F3-96ss
$3sss-3274

Memory between the top of the symbol table and the bottom of
the source program is free to be used without clobbering
anyth i o9 .

The assembler automatical ly protects memory (dur ing
assembly) from $3gtg to the top of the symbol table, and
f rom the bottom of the source prograrn through $f'n'f'n'. This
insures that your object program does not clobber the
assembler , the source program r oE DOS.

MNTR comrnand: :MNTR

Enter s the Apple system rnon i tor . Thi s i s the same as CALI
-t5t f rom BAS IC. You may reenter the l,lacro Assembler by
typing Dgg3G, 3DgGr or hitting RESET"

: MNTR

3*44

RST Command: : RST express i on

Changes the App1e I I RESET vector to the speei f ied va lue . I f
you are using the Autostart tlonitor, pressing the RESET key
causes a braneh to the address in the RESET vector.
Normal ly thi s is set to $3O0 by DOS to reenter the
assembler, but you may change it to enter the monitor,
BASIC, or your own 6502 program.

:RST -15I
: RST $rr'0 g
: RST $3og
: RST $3gA

(RESET enters the monitor)
(also enters the monitor)
(RESET enters DOS and assembler)
(RESET enters program at $Ag\

USR Command: :USR whatever

An open-ended eommand, waiting for you to design and
activate with your own 6592 code.
when you type the command "USR", a JSR $ogg6 ($fgg6)
inslruction is executed. I f you have not installed a Jf.,tP to
your own 6592 program at $n966, the command is equivalent to
a "No Operation" command" You can write a 65A2 program to
process your own command , and put a JI.,!P instruct i on to i t at
$ogg6.

The entire command line is stored in the monitor input
buffer, starting at $gZgA. Your USR command processor can
scan the input buffer to pick up any parameters you wish.
Remember that USR ealls and runs 6502 eode, not 6BggB code.

DOS COMI4ANDS

All the Apple DOS eommands are valid, even though you are
operating from within the Maero Assembler. This feature
allows you to maintain your source and object programs on
d i sk us i ng the LOAD , SAVE , BLOAD and BSAVE commands . Source
programs appear in the disk catalog with a type code of "I",j ust as though they were I nteger BAS IC programs.

Housekeeping Commands: CATAIOG, RENAI,IE, DELETE, LOCK,

3-45

UNLOC K , VER I FY , t,lON , NOtlON , and I.{AXFI LES can be used as you
desire. They function exactly the same within the I',Iacro
Assembler as they do within BASIC,

Source Maintenance Cornmands: LOAD and SAVE when used with a
fi lename are interpreted by DOS . I f no fi lename is
included, the Macro Assembler interprets them as cassette
tape commands.

Object t*{aintenance Commands: BSAVE, BLOAD, and BRUN
commands may be used to maintain object programs on the disk
and to execute them. Be careful when using BLOAD and BRUN
that the program you are loading does not load on top of
anything you want to keep. And remember that BRUN applies
only to 6592 programs, not those for the Q-68 boardt
T/O Selection Commands: PR*, INt, and EXEC commands may be
used. PR* (slot) activates Apple intelligent interfaces for
printers and other devices. IN* (slot) may be used with
other terminals, modeffisr et ceteEao EXEC executes a stream
of commands or reads in a series of source lines from a text
fi1e.
BASIC Commands: INT and FP may be used to exit the l*,lacro
Assembler and enter either Integer Basic or Applesoft.
Commands you should not use: RUN, CHAIN, and INIT will not
do what you expect. Avoid typing the rrRUN f i lename"
command, because it would be recognized by DOS as an attempt
to load and execute an integer BASIC or Applesoft program.
However, since the DOS links have been set up for the l'lacro
Assembler , the prograrn would not execute. I t would j ust
clobber rnemo ty , poss ibly your source program or the
assembler itself t

The CHAIN command is equally dangerous. INIT will properly
format a disk, but it writes your source program (which is
not executabLe) as the HELLO program I I t is rnuch better to
INIT from within Applesoft or Integer BASIC.

F,ION I TOR COMI'{AT{DS

Al l of the Apple I I t"loni tor ccmmands are avai lable f rom
within the t"lacro Assembl-er. You use them by typing a dol]-ar
sign ($) af ter the prompL symboL, followed by any rnonitor
cornma nd .

3-46

Moni tor commands are expla ined on pages 46-66 of the Apple
II Reference Manual. With these commands you may examine,
change , move or ver i fy memo ry i read and wr i te cassette
tapes; disassemble 6592 maehine language programs; execute
6592 programs; and per form hexadec imal ar i thmet i c .

3-47

3*48

Sect,ion 3.6 DirecLi.ves
Twenty essembler direL--Lives are available in tl*re Fla*ra
Assembler to control the assembly prccess and tc def in* clata
in your programs. Directives are indieated k,y a peri"arj
f ol lowed l:y two or more Letters.

OR
.TA

Origin
Target Address
TarEet F i 1e
Include F ile
End of program
Equate
Da ta
Hex str i ng
ASCII string
ASCI I terminated

B 1 ock S tor age
Control Assembly Listing
Title
User defined directive
Page eject
Conditional Assembly
Condi tional Assembly
Conditional Assernbly
Macro definition
End macro

.BS
" tI ST
.TI
.US
.PG
.DO
.ELSE
"FIN
.MA
.EM

.TF

.IN

.EN

.EQ

.DA

.HS

.AS

.AT

Origin3....r....r.............. "OR gxprgssion

Sets the prograrn or ig in and the target address to the value
of the expression. The origin is the address at which the
object program is to be exeeuted. Target address is the
memory address at which the object program is stored during
the assembly. The .OR direetive sets both of these to the
same valu€ r which is the normal way of operating.
The or i g i n of a program rnay be set to any va lue f rom $g
through $frfFfFFF. However , i f you are assembl i ng to
memory, you must specify a target address (where the objeet
code is stored) somewhere in the Apple t s memory range. I f
you use a target file (.TF) , the DOS BLOAD address will be
the same as the low order 16 bits of the origin. If you
want to load it elsewhere from disk, specify the address
parameter with the BLOAD parameter in the normal way.

I f you do not use the .OR directive, the assembler sets both
the program or igin and the target address to $fggg . I f the
express ion is not def ined dur ing pass one pr ior to i ts use
in the .OR directiver do error message is printed.
If a.TF (Target File) was active before the.OR directive,
i t is closed out when the . OR di recti ve is eneountered .

3-49

Target Address: TA express i on

Sets the target address at which the object code is stored
during asssembly.

The target address is distinct from the program or igin
(which is either set by the .OR directiver oE is implicitly
set to $10ggl. The .OR directive sets both the origin and
the target address; the .TA directive sets only the target
address. Object code is produced ready to run at the
program or ig in, but is stored starting at the target
address.
We used the.TA directive to assemble code for the Q-68
board I',loNrroR. This code, which is in the onboard EPR0M,
starts at location $fgggg. This address is unknown to the
Apple, since Apple memory extends only up to $nFFf . But we
had to store the object code somewhere, in preparation for
burning it into an EPROM. The EPROM burner we use looks for
data starting at Apple location $aggg. So we preceeded the
assembly code of the I,IONITOR program wi th;

.oR

.TA
$r0sas
$ 4sss

Although the object code produced by this assembly is
designed to run at starting address $1gqgg, it is stored at
s tar t i ng address $4 g Ag .

Target File: TF fi lename

Causes the cbject code to be stored on a bi nary di sk f i Ie,
rathrer than in mernory. Only ttre code which f ol lows the .TF
directive is st,ored oR the f i le. Code is stored in the f i le
until another "TF directive is encountered, or until a 'TAor .OR directive is encountered.
The fifename specifienxay incl-ude volume, drive, and slot
numbers i f necessary. I f you have both . IN and .TF
directives in ti:e same assernhrly, and the files involved are
not. on thre same disk, you need to specify elrive nurnber (and
mayb* sl"ot r:urni:eri with errery .IN and with every .TF
directive,

oBJrS6rDLLfr*g Trr

3-5fi

-'fhis example .l&.rses si--ject_ cc-,rje to i:e staverl in * disk fil"ecalled "OBJn', cn Lh* sl"ai. 6u driv* l di"sk Criv€.
App-i"e objecL c*tle, w?:i*:i: i.s sav*C a.$ & rrgt: type file, alLows
on-ty one load addresE " Ti'ieref,elr*, if ysur prCIgram consistsof several pieces ,*ri th di f f,erent or ig ins, each piece musL, be
storecl as a separe,te 'Jj.sk fii*" This r*qui.res a .TE'direcL,ive tand a di f f erer-lL f itr-e ftai"c€) for each section "

1fftr#
I 010

e
a

:
2#fi fi
2gLfr

"oR
"Tr

.oR

.Tr

#1sfis
PROG].

$1ss84
PROG2

If yor! later do a 'oB[,oAD*' of pROGl, it witl load at $f 0fi6i
and if you do a "BLOAD'U of PROGZ, it wiLl load at $0084
(only the bot Lom 16-bi ts are used) . The load address may be
overridden by ineluding the I'Ag'r directive in the BLOAD
operation. For example, o'BtOAD pRoG2, A$4 ggg" would load
PROG2 starting at address $49Tfi"
Dur ing assembtry, the Hacro Assembler temporar i 1y patches DOS
to allow a binary file to be handled r^rith text fil-e
commands. It also creates a text file r*ith your specified
name and uses tex t f i le techn iques to wr i te the obj ect code
into the fi le. When assembly is complete r or when the .TE.range is ended by encounterinq another .Tf' (or .TA or ,OR),the text f i le is transf ormed intr: a binary f i le by modi f ying
the DOS di reetory entry.
If you have typed "MON C" ia DOS command) before assembly,
the DOS eommands issued by the assembler for the .TFdirective are pr inted on the assembly listing. For each .TFdirective, during pass two, yau will see the following
sequ ence :

OPEN fi le name
DELETE file name
OPEN file name
WRITE file name

If you have typed "MON O" (a DOS command), you see lots of
erazy eharacters on the sereen during pass two of the
assembly. These are the object code bytes which are being
written to the Target File. It is better to not set I,ION O
mode .

3-s1

Incl-ude: " IN f ilename

Causes the contents of the speci fied source fi le to be
included in the assembly.

The program which is in memory at the time the ASM command
i s typed is cal led the "root" program. Only the root
program may have . fN directives in it. I f you attempt to
put . IN directives in an included program, you wilI get a
"NESTED " rNrr error.
When the . IN di recti ve is processed , the root program i s
temporarily "hidden" and the included program is loaded*
Assernbly then continues through the included program. When
the end of t.tre included program is reached, it is deleted
f rom rnemory and tbre root program is restored. Assembly then
continues with the next f.ine of the root program.

I f you type the I"lOlI C comrnand (a DOS command)
beg i nn i ng as semb 1 y, the LOAD comrnand s i s sued. b
assembler are printed r*ith the listing. Eackr

before
Yi

the
nc 1 uded

program is loaded in turn dur ing pass one of the assernbly,
and aga i n dur i ng pass two "

The "IN directive is useful in assembtring extremely Iarge
programs, which cannot fit in mernory all at once. It is
also useful f,or connecting a library of su'hroutines r*ith a
rnain proqram. Some programmers prefer this method over the
use of macros"

The filename portion of the directive is in standard DOS
format, and may include volumer slot, and Crive number.

End of Progrem! EN

1;ef ines tit* e::r1 cf the source prograr{i; s[*f ar] incl uC,*<1
{.IN} rmodul-e. Y*u vsoul"d nsrrrrally mak* this Lhe last lineu
buit y{it: may p}ace tt ei}riier in or*ler t'.i assemble on.[y a
porti"on af yoLir E{iiJr,Je prsgram. T f nc .Hrd is presenL in
ycur pI:oEran^i , the asseml:1er assLltTi*:+ rha L y*1"3 rneant tr: puL
r;rtre aft*r the last line* f4ost- &ss*r.ntl:1c,'xs for siirne sLranrJe
i:eason go cCInnplete).y crasy if Ltre .iiN di::i1,.-rtive is rnissingl

1 -.: ,1

Equate: label .EQ expression

Defines the label to have the value of the expression. I f
the express ion is not def ined r En error message is pr inted .
If you negleet to use a l-abel with an equate directiver Eo
error messaqe is pr inted also,

Data: labeI .DA exprlist

Creates constants or var iables in your program. "ExprI ist"
is a list of one or more expressions separated by commas.
Each expression may be treated as one, two r or four bytes,
depending on how it is written.
If a * preceeds the expression, it is treated as an B-bit
value.
If a / preceeds the expression, it is treated as a 15-bit
vaIue.
I f nothing preceeds the expression, it is treated as a 32
bit value.
You may isolate any 8-bit or 16-bit field within a 32 bit
value by using the leading rr*rr or tt/ttt, together with
division by an appropriate value. For example, if you want
to represent the third most signif icant byte of a 32 bit
number in a .DA directive, you could use

*ver,u E /256
or

*var, uE / $ 10 0

S imi lar ly, to speci f y the high order 16 bi ts of a 32 bi t
number, use

DA /vp.I-uB/6s536
or

. DA /V X.UE / $LqgTg

(Donrt confuse the two tt/ttt symbols. The first means
truncate to 16 bits; the second means divide) .

The value of the expressionr ds one, twor or four byt€sr is
stored at the current location. I f a label is present, it
is set to the address where the first byLe of data is

DA

DA

3-53

stored.
The .DA directive may be used to reserve RAM space
var i able . For example, the code :

COUNT

for a

reserves four
COUNT.

'DA 9g

bytes of RAl,l f or later use as the var iabte

I f you use . DA to def ine a var iable, it is a good habi t touse an expression like rr*-*tt, which has a value of zero.This weird expression might make your program more
sel f-explanatory when you look at i t aga in next year . Thefunny form emphasizes the fact that the data value put at
COUNT has no significance--it merely reserves spac€.
A common use for the.DA directive is to set up the vectors
for the Q-68 board. I f you are going to start up the e-68board wi th the trqgp tr command , the f ol lowing code must appear
somewhere in your 68ggg source program:

. OR $8gg , 68 gtg page g

.DA INITSP ;initial stack pointer value

. DA INITPC ; initial program counter value

More .DA staternents will follow this if you use more of the
68gg8 exception vectors. (I f you don I t know about exceptionvectors, take a look at Section 71"

Hex String: label .HS hhh...h

Converts a string of hex digits (hhh...h) to binary, two
digits per byte, and stores them starting at the current
location. I f a label is present, it is defined as the
address where the fi rst byte is stored . I f you do not have
an even number of hexadecirnal digits, the assembler prints
an error message.

NOTE: UnIike hexadecimal numbers used in operand
express ions, you must not use a dol lar sign wi th the . HSdirective.

3-54

ASCII String labe1 .AS *aaa."a*

Stores the brinary form of the ASCII characters "aaE.."Etr in
sequential loeations beginning at the current loeation, I f
a label is present, i t is def ined as the address where the
first eharaeter is stored. The string "aa6..n6rr rnay contain
any number of the printing ASCII characters. You indicate
the beginning and end of the string by any delirniter (*) you
ehoose.

ASCI I eharacter codes are seven bi L values. The . AS
direetive normally sets the high-order, or Bth, bit to
zero. Some people like to use ASCII codes with the
high-order bi t set to one r so the Assembler ineludes an
option for this.

. AS *aa€r. . . E* ts the high-order bi ts
ts the high-order bits

The delimiter (*)
spaee or minus.

may be any pr i nt i ng character other than

ASC I I Termi na ted ; Iabel ,AT *aaa...o*

This works just like the.AS direetiveT €xcept that the
high-order bit of the last byte in the string is set
opposite f rom the preceding bytes. This allohrs a
message-printing routine to easi Iy find the end of a
message.

B lock S torage : label .BS expression

Reserves a block of bytes starting at the current location
in the program. The expression (range:1-65535) specifies
the nurnber of bytes to reserve. If there is a label, it
ass i gned the val ue at the beg i nni ng of the block.
The address of the beginning of the block is printed in the
address column of the assembly 1i sting.
If the objeet code is being stored directly into memory,
bytes are stored for the .BS di rective. However , if the
object code is being wr i tten on a disk file by using the

=A
=1

se
SE

no

3-5s

TE

directive, the .BS directive wr ites (expression) bytes(vaIue: gg) to the file.

Title: .TI expression, title

When.TI is in effect the assembler prints a title line and
page number at the top of each page. The expression
specifies the maximum number of lines you want to print on
each page. The ti tle can be up to 7g characters long and is
printed starting at the left margin. "PAGE xxxx" is printed
immediately after the title.
If you do not specify a title, only the page number is
pr inted at the left marg in . Spacing or center ing of the
title and page number can be adjusted by adding leading or
trailing spaces to the title.
The Macrc Assembler issues an automatic formfeed when a page
fills up. I f you want to end a page early, use the . PG
directive. You can use more than one .TI directive in a
prollram if you like. The .TI directive issues a formfeed
command when encountered in the listing.
You can turn off ti tles by using .TI with a pagelength of
zeto.

Listing Control: "LIST optionlist

Controls the listing output of the assembler. "Optionlist'ris a list of one or more of the fo}lowing keywords:
OFF
ON

of f .
on.

ng
nE

Listi
Listi

MOE'E
MON

Macro expansion I
Macro expansion 1

of
on

rsting
isting f

If .LIST OFF is put at the beginning of the source program,
and no .LIST ON is used r Do listing aL all is produced. The
program assembles much faster wittrout a listing, as most of
the time is consumed in putting characters on the screen and
scro I I i ng the screen up.

3-s6

I f you put .LIST OFF at the beginning of your souree
program, and .LIST ON at the end, only the alphabetized
symbol table is printed.
You may also use this pair of direetives to bracket any
portion of the listing you wish to see or not see.

With.LIST MON in effect, the complete macro expansion is
listed. The call line is printed with its line number, then
the expansion lin€sr eaeh with a line number of 'tDg0g>'t.

Page Control: PG

Pr ints an ASCI I Porm Feed character ($0C) . I f the assembly
listing is being printed on a printer which recognizes this
eharacter, a form feed occurs and the next listing line
appears at the top of the next page. The .PG line itself is
not listed.

Conditional Assembly: .DO expression
. ELSE
.FIN

with these directives, you can include or exclude a
particular section of eode in the assembly, depending on a
eond i tion set ear 1 ier . The operand express ion i s evaluated
as a truth valuer and must be defined before the ".DO'.
Zexo means skip source eode lines; non-zero means assemble
them.

The .EISE directive toggles the eurrent truth valu€ rallowing an " if . . . theo.. . elsett strueture. There may be more
than one .ELSE directive within the ".Do-.FINrr block; eaeh
time .ELSE is eneountered the truth value is switehed. .FIN
terminates the eonditional seetion, .ELSE is optional but
"FIN is required.
".DO-.FIN" blocks may be nested up to I deep.

These di reetives are often used to produee di fferent
speeial i zed versions of a program from the same souree
code. For example, the main memory and language eard
versions of the Macro Assembler were assembled from the same
source code, using a .DO flag called LCASM. When a change

3-s7

i s made to
ed i ted to
prog ram i s
LCAS l{=fr .

the assembler, only one source line needs to be
generate the two di fferent versions. The source
assembled twic€r once with LCASI"1=1, and once with

t'.DO-.FIN" blocks can also be used to exclude testing
routines from the finished program, to relocate a RAM
variable area, or to add or delete extra variables.
The following page shows three ".DO-.FINrr examples.

3*58

LAg g
LqLg
L62g
ta3g
Lg 4g
Lg5g
Lg6g
1"07 0
L08s
Lsg g
LLAg
11ts
LLzg
I13 0
r14g

: ASM

gagagssg-

gaggLggg- 6La6 g6g6

wsgglgs 4- 4E.75

gggglggi- 4 E7s
aa0gLagE- 4875ggggl0oA- 4815

* COND I T I ONAL AS S EMBLY DEI-{O*__
FLAG . EQ 0

. DO ELAG
BS R PLACE I
.EtSE
BSR PLACE 2
. ELSE
BSR PLACE 3
.FIN
RTS*__

PLACE 1 RTS
PLACE 2 RTS
PLACE 3 RTS

I Lqzg FLAG
: ASM

gggg a gaL-
g60gla0g- 6lgg g0g8

aggaLag4- 6Lg0 sggS

ggaglagE- 4E75

ggwgLagA- 4875gaaaLggc- 4 875gggtLggE- 4875

* CONDITIONAL ASSE},IBLY DEMO*_-
FLAG . EQ U

. DO FLAG

.ELSE
BSR PLACE 2
.ELSE
.FIN
RTS

PLACE 1 RTS
PLACE 2 RTS
PLACE3 RTS

* CONDITIONAL ASSEMBLY DEMO

FLAG . EQ 1
. DO FLAG
BSR PLACE 1
.ELSE
.ELSE
BSR PLACE 3
.FIN
RTS*__

PTACE I RTS
PLACE2 RTS
PLACE 3 RTS

EQl

Lg0g
LgLA
Lg2A
L036
Lg5U
Lg6g
Lg7 g
L69 g
LLAA
1 110
LLzg
113 0
LL4g

LAgg
LgLg
L62g
Ls36
Lg 4s
Lg5s
Lgl g
LgSA
LAg A
LLOO
1110
LLzg
113 0
LL4g

3-s9

Here is a conditional assembly example which illustrates howa program may be assembled in two versions: A RAM version
at origin $10A0, or a ROI'{ version at origin $10984"
: ASI,l

ggssgggL-
il uggggg g -
gggggggL-

gassLvsg- 4E71

Lg3g RA},l " EQ

: ASM

aag ggg gL-
g gggg gga -
ggggg gfr g -

gsglggE 4- 4 E7I

Macro Definition:
End Macro:

TRUE . EQ t
FALSE .EQ g
*__
RAI'I . EQ TRU E
*

. DO RAI'{

. OR $Lggg ; RAM ADDR
"ELSE.FIN

* _-
NOP

Lggs
LALg
Lg2A
Lg3g
Ls 4g
Lgsg
Lg6g
LAl s
LLggllIg
LLzg

F'AL S E

Lggs
Lglg
Lg2g
L63g
Lg 4g
LgsU
Lsl g
LgSg
LAgg
Lj,g g
r 110
LL?g

T RUE
FALS E

EQ
EQ

I

RAM EQ FALSE
*

*

.DO

.ELSE
"oR.TA
"FIN

RAl,t

$I0 gB4 ; RoM ADDR
$Lfi gg

NOp

. MA macr o nafne
" EI,l

A macro defini.tion rni:st beEin with the directive.MA (macro
name), and end with t,he "EF{ directive " For deLailed
i nf orrnat, i on r see Sect i on 3 " B on macros "

User Directive:

3*bfi

l-abel .U$ vrhat,ever

The . US di recti ve al lows for poss ible expans ion of the
assembler by users. When. the . US directive is processed
(both in pass 1 and pass 2\ , a branch i s made to locat i on
$oggC ($3ggcl . This locaL,ion normally contains a 6592 JMp
instruction r which treats the . uS as a comment. The source
line (without the line number) is in the keyboard buffer
starting at $gZgg.

If you wish to use the .US directive, change $ngTc-$oggn($fggC-$36gBl to jump to your own 6592 program. Details of
the steps necessary to implement your own directives are
published in the September IgBt issue of Apple Assembly
Line, available from:

S-C Software Corporation
2331 Gus Thomasson, Suite L25
P.O. Box 28g3gg
Da11as, Texas 75228
(2L4) 324-2056

3-6 I

3*62

Section 3.7 OPERAND EXPRESSIONS

operand express i ons are wr i tten us i ng elements and
operators. The val id operators are +, -, *, / , <, = r and
). Terms may be decimal or hexadecimal numbers r labels, a
literal ASCII eharacter r or an asterisk (*) " The first term
in an expression may be preceded hy a + or -r
Operand expressions have 32 bit precision. This gives a
range of fr-4r294r967r295 decimal; and $g-$n'r'PFFFFT hex"

E tEI,IENT S

Decimal numbers: A number with no prefix is assumed to be
deeimal (base Ig)"

FLAG

MOVE . B
MOVE. L
.DA
.EQ
.DA

*2gg,D3
*-f g,D4
3s691
-1
4996*256*L2

$Lsss
*$2FrD5
D6, $ra 49fi
* $ 18A69 ,A2

Hexadecimal Nurnbers: Hexadecimal numbers are preceded by a
dolLai sign, and may have from one to e ight digits.

.oR
I-,IOVE. B
MOVE . W
MOVE. L

Beware of the mi ss ing dol lar s ign t The assembler may be
quite satisfied to think of your hexadecimal number as a
decimal one if you omit the 'r$*. In some cases even a
number wi th letter s in i t, such as 23AB r ffidy be acceptable i
it may be interpreted as decimal 23 and a comment "A8".
Labels: There are three types of labels in the Macro
E-ssem6-fer. Normal labels are f rom I to 32 eharacters long.
The first character must be a letter. Following eharacters
may be letters, digitsr or periods. Local labels are
written as a period followed by one or two digits. Private
labels are written as a eolon followed by one or two
digits.
Labels must be defined if they are to be used in an

3-63

express i on . Label s used in operand express i ons af ter . OR,
.TA7 .BS y and .EQ directives must be defined prior to use(to prevent an undef ined or, ambiguous location counter).
Labels are defined by being written in the label field of aninstruction or in a directive Iine.
Literal ASCII Characters: Literal characters are written
as an apostrophe follor^led by the character. The value is
the ASCII code of the character (a value from $gg through
$7r; .

tT RA .EQ
.DA
MOVE . B

I f you wish to use I i teral ASCI I values with the sign bi t
equal to I (codes $89-$fn1, you can do so by adding $Bg inthe operand expression

tA
*txr tA
*' z, D3

'A+$ 8 g

*'x+$8 a r' A+$89
tt'z+$g fr ,D3

LTRA .EQ
.DA
MOVE . B

Asterisk (*): Stands for the current value of the locationffis is useful for calculating the length of astring.
MES
SIZE

VAR
F I LLER

AS
EQ

,/auy I,lEs sAGE/
* -F!ES

_
$9gg-*

;a
; F it I from here thru
; $8r'r

EQ
BS

OPERATORS

You can use arithmetic and relaticnal operators in operand
express ions. Expressions are evaluated str ictly from left to
right, with no other precedence implied " parentheses cannotbe used to change this order.
Arithmetic Operators (+ * /): Any of the fsur arithnietic
operators may be used in an operand express ion "

A1 I operations are per formed on 32-bi t values *

3*64

Multiplication returns the low-order 32-bits of the 64-bit
product.
Overflow and division-by-zero are not considered assembly
errors. Overflow merely truncates , returning the low-order
32-bits. Division-by-zero returns the value $f'f'fff'FEF.

Relational Operators (< =)): The three relational
operators compare two 16-bit values. I f the relation is
true, the result is l. I f the relation is falser the result
is 6. The result can be used in further ealculations, and
as the truth value for eonditional assembly (.DO
directive).
Three elementary operators are avai lable: Less than (<) ,equal(=)r and greater than (>). They eannot be eombined as
they are in BASIC to form (=, (),)=. However they may be
used with the AND and OR operators described in the next
paragraph to achieve these combined operators.
The result of a relational expression is a true or false
value . A va lue of zero is cons idered to be fa I s€ r and a
non-zero value is considered to be true. You may operate on
Iogical values wi th * and + operators . * has the effect of
the log ieal AND, and + has the effeet of the logical OR
operation.
I f you are in doubt how an express ion wi 1 I evaluat€, you can
use Lhe VAt command to find out. Or you can go ahead and
assemble your prograrn and see how it turns out.

:VAL 56>33
0gsa 6g gl
:VAL 33>55
ggggg aga
:VAL 55>33*33>56
ssg a g ga0
:VAL 56>33+33>56
sggggggL

3-5s

a ctJ*LiU

Seetion 3.8 I{ACROS

A maero is a single instruction in your source code, whieh,when assembled, is replaced by a predefined ser ies ofinstructions. You ean use macros as a shorthand forcommonly used code sequences.

A S I I.{ Pt E },lAC RO

Here is a smal I sect ion of code which adds two 64 bi tvalues, The number starting at memory location $LAUT isadded to the number at $1908, and the result is storedstarting at $fg0g"

We can define a macro called DBTADD to do this operation.Just add the fol lowing two di recti ves to the program eode :

MOVEA
MOVEA
MOVE
ADDX. L
ADDX. L

.MA
MOVEA
MOVEA
MOVE
ADDX " L
ADDX. t
.EM

* $ 1 gfrg + 8 , A 0
* $ 1 gg8+ B , A 1
*a ,ccR
- (A1) ,- (Ag)
- (AI) ,- (As)

DBTADD
* $ r gga+ B , A 0
$ 1 Ag8+ B , A I
*o ,ccR
- (A1) ,- (A0)
- (e1) ,- (Ao)

; macro name

iend of definition
simply put:Now to do the same operation in your program,

>DBtADD

Macros are indicated by the leading rr> n symbol . Wheneverthe assembler encounters the the macro call tt>DBLADDTt, itreplaees i t wi th the actua 1 program I i nes conta i ned betweenthe .f"lA and .EM directives.
The object code will be the same with or without macros. Ifan operation is used only once or twice in a program, itprobably isn I t worth the effort to define a macro for it.But if you have to do the same operation on severaldifferent variablest a macro can save a lot of work. Macroscan also help prevent common mistak€sr such as incorrectly

3-67

specifying data sizes.

CALL PARAMETERS

Suppose you want, to generalize the above macro to use any
rnemory locations; not just $19Tfi-$f OgY. You can "pass"parameters to macros. Parameters are values which are
defined when you call the macro "

.l,lA
},TOVEA
MOVEA
MOVE
ADDX " L
ADDX. L
. E['{

DBLADD
*l I+8,A9
*l2+8rA1
*a ,ccR
- (A1) ,- (A0)
- (A1) ,- (eg)

; macro name

; end of definition

(You enter the rrl'r character on an App}e II+ by typing
shift-M).
The terms]t and 12 are called dummy variables" "Dummy,
means that they are put in as place marle ers, to be def ined
later. There can be up to nine of thes€r from 'rJlrr through
rrJ 9rr. There is also a parameter which is automatically
defined. This is t'I*", and it takes the val-ue of thre number
of parameters passed to the macro"

Now when the macro is cal"led o it requires two values to plug
into the dummy vatr iables:

>DBLADD $10 frA , $I098
Farannet,ers are written in the operand fietd of the macro
cal l li ne , separated b,y cofiunas . I f you want a parar&et,er ko
include a comm& or space s enclase the parar$eter in quotation
marks * I f you want it to also inclr:de a qustation mark, use
two quotation marks in a rcw rrlherever you want one. For
example, in the macrc!

3*-68

I is2 is
3 is
4 is
* is

>sAM JONES, $1234, "ABC DEFrr , rtABC, DEF, *rt GHr'f

JONES
$1234
ABC DEF
ABC,DEF, '' GHI
4

What is actuall
string, which I
variable.

passed to a macro parameter is a text
terally replaees the corresponding dumnny

v
1

This means that you can use expressions other than numeric
constants. For example, register names may be passed to
macros:

: ASM

gaga gBg g -
aggggSgg- 34sL

gaggaSa2-
qassgEsz- 34gL

Lgag *--
L6LA .MA A
L626 MOVE DI1rDl?
Lg3g . EM
L04g * --Lg5g >A L,2gggg> MOVE Dl, D2
Lg6g * --
Lfr1 0 .I,lA B
LASU MOVE lLrl2
LAgO . EM
LLgg *--
1119 >B Dl, D2gggg> MovE Dl, D2
LLzA * --
1139 .MA C
LL4g MOVE J l, J t+$ LAg
t15g .EM
1160 *--
LL7 s >c $LAwgggsg0Ss 4-gggggSg4- 3rFB Lggag0gg08sg- LLs6 ga$g> l,rovE $10 60 , $I0 00+$Lga
t18g *--

In macro A, the macro supplies the rrptr portion of the data
register name, and the parameters l 12 suppl
I n macro B, the ent i re reg i s ter names Dl an

v
d

the numbers.
D2 are passed.

Macro C uses a hex address, and the arithmeLic expression
"] 1+$1gg" to add $LtA to the passed address. Note in the
assembly listing that $I0$A+$Lgg equates to $lfA0, as it

3-69

should.

PRIVATE LABELS

Private labels are used inside a macro definition to name
branch points in the same way that labels are used in the
main program. They are written as a colon (:) followed by
one or two digits.
The t'lacro Assembler considers each private label unique to
the macro in which it is used. This allows you to re-use
the same pr ivate labels in di fferent macro def ini tions.
Private labels do not interfere in any way with local
Iabels. Here is an example which uses both pr ivate labels
and local IabeIs:

Lgfig
LLgg
L5gg
r 510
L52g
ls30
Ls 4g
I542
1s44
I5sg
156s
L57 g

.oR $I02e*__
"['1A SPIN
MOVE I I, D2

:1 DBF DZrzL
. El'I*__

*
LOCAL " AND. PRIVATE. LABETS

l,tovE *$22 rD3
.I >SPIN *$59

DBF D3, " 1

r*7 {rt

: AS I.{
Lgag . oR $1 g 2A
LL$g *--
L,gg .T'1A SPIN
1510 MOVE JlrD2
L52g :1 DBF Dz,iL
L53g . Er*t
l.54g * --
L542 *
1 54 4 LOCAL. AND . PRI VATE . LABELS

00gaLg2\- 353C gA22 1550 I{OVE *$2 2 ,D3gggaLU2E- L56A .1 >SPrN #$59
agagLgzv- 34 3C gg5g gggg> tlOVE *$ 5 g ,D2gqggLgSz- 51CA FFE E AAgg> : 1 DBF D2, : Igggglg 36- 51CB rFF 6 L57 A DBF D3 , . 1

SYMBOL TABLE

ggggl0z\- LOCAI. AND. PRIVATE. TABELS
.ql=frAggAB2E

Eaeh pr i vate label requ i res f i ve bytes of sto rage dur i ng
assembly. This storage starts at $0ff'f and works downward.
Consult Appendix A on memory usage for details.

LISTING THE MACRO EXPANSIONS

There are two directives which control the appearance of
macros in the asembly listing. With .LIST r,lON in effect,
the complete macro expansion is pr inted. The call line is
pr inted fi rst r and then the assembled code on subsequent
1ines.
The expansion lines have line numbers of "0Tgg>t' to indicate
a macter and are indented one space. When .LIST I,',IOFF is in
effeet, only the macro cal 1 line is pr inted. This saves
spaee and makes the log ic of the program eas ier to fol low.
You do, however, lose the listing of the object code, which
shows exactly what is stored at each address.

USING CONDITIONAT ASSE},IBLY IN T.,IACRO DEFINITIONS

You can use the .DOr .ELSE, and .FIN directives inside macro
def ini tiorls. They are executed dur ing macro expansioo r so

3-7 I

that the same macro can be expanded
depending on parameters.

in different vrays

An example of condi tional directives inside macro
definitions is given in the Nested Macro Definitions
section, on the next page.

5-ta

NESTED MACRO DEFINITIONS

You can eal1 macros within macro definitioDs. This is not
recommend€d , since i t produces convoluted and hard to fol loweode. Many programmersr however, delight in the intracaeiesof nested and recurs i ve macros . '

Suppose you want to write a macro which can be used to callone or more subroutines on a single source line" por
example , CALL SAM shou Id expand to BSR SAI,I. CALL SAM, TOMshould expand to JSR SAM and JSR TOM, and so on. you eoulddo it at least two ways: using conditional directives, orusing nested macro definitions.
Using eonditional directives is fairly straightforwartl . Thefollowing program shows how. The rrJ*rt parameter is testedto determine how many parameters are passed to the macyat
and thus how many BSR I s to produee.

Lgsg
LgLg
Lg2A
Lg3g
Lg 4g
Ls5g
LA6A
Lg7 g
LgBq

gsagLsgs - Lgg s

sgaalags- 6lag galz gq6s>
gggg>

gaguLgg4- 6Lgg aglz sgss>
ggga>
ggg g>

agwaLg$8- SLgg oggc gggg>
gg go>

ggggLgac- LLgA

ggsglgac- 6Lag sag6 sgsa>
g ggg>

aggaLaLg- 6lgg gga6 sggg>
0ggg>
aaga>
ggag>

>cAtL sAM, ToM, JOE

.1"14
BSR
.DO
BSR
.FIN
.DO
BSR
.FIN
.EM

CALLlr
I *>r
1z

S A},1
3>1
TOf"l

3>2
JOE

SAM
2>L
TOM

I *>zlr

BSR
.DO
BSR
.FIN
.DO
BSR
.FIN

BSR
.DO
BSR
.FIN
.DO
.FIN

>CALL SAM, TOtl

266 g sAt',t RT sgggglgLL- 4E'75

3-7 3

2>2

The other approach uses a nested macro definition--one which
i ncludes a cal l to another l"lacEo . Three macros are set up
for each possible number of parameters: CALLI for one
parameter , CALL2 for 2 | and CALL3 for three. Then the macrottCALL" is used to call the appropriate one of thos€. ThettnestedI macro is in line 1160.

ggggLgl6- 4875ggggLgl8- 4E7s

gggsLgsg -
ilggg Lgag -ggggLggg -
sggsLss 4-
gaggLgg 4-
ggggLgg 4-
ggggLggS-
ggggLgfic-
ggggLggc-
frgggLfrgc-
gssgLg I g -
frgggLg I 4 -

6Lgg ggL6

6lgfi ggLz
6lfrg ggLs

OLg@ gggA
6Lgg fifi$g
6Tsg fifr96

zgLA JOE RTS
2g2g TOl,l RTS

Lggg .I*1A CALL 1
LgLg BSR I r
Lgzg . EM
Lg3g *--
Lg4g . },1A CALL2
Lg5g BSR I r
Lg6g BSR I Z
Lgl g , EI,I
LgSg * --
Lggg .I"IA CALL 3
LLgg BSR] T
1119 BSR lZ
LLzg BSR I 3
II3O "ET'{1149 *--
1159 .t'lA CALL
1t6g >cALLI* I1rl2,l3
LL7 g . E[.1
11Bg *--
I19 g >CALL SA},1
ggg g> >CALL 1 sAr't , ,ggfrg>> Bs R sAt"l
Lzgg >CALL SAM, JOEgggg> >CALL2 sAM, JOE,gggt>> BSR SAMgggg>> BsR JoE
LzLg >CALL SA[,1, JOE , TOP!gggg> >CALt 3 SAM, JOE r Toljtgwgfi>> Bs R sAl,lgggfr>> EsR JoEggfrg>> BS R TOI'1
12t5 *--
L22fr SAM RTS
L23g JOE RTS
")"249 TOM RTS

3-7 4

gggfrLgrS- 4875gagglgtA- 4875
frgsfrLfi}c- 4875

POSSIBLE ERRORS

What happens i f you supply more parameters in a macro cal 1
1 ine than the macro defini tion expects? The extraparameters are simply ignored. you can use the I * parameterwith eonditional assembly directives to test for the correctnumber, if you wish.
I f you do not supply enough parameters on the cal 1 I i ne , themissing ones are assumed to be nu1I strings.
The Maero Assembler tests for three error conditions.you attempt to call a macro which has not been definedearlier in the program, the ***UNDEFINED I"lACRo ERR0R isprinted. I f you use a .MA directive without a name inoperand f ield, the ***pg ['{ACRO NAME ERROR is pr inted.you use the rrl* eharaeter without the digit l-g or ttrecharacter , the ***BAD MACRO PARAMETER ERROR is pr inte,J .

If

the
If
rr#tl

MACROS AND SUBROUT I NES

There is a signi ficant di fference between maeros andsubroutine cal ls. A subroutine is placed in memory onlyonce, and eal led from di fferent parts of the program. Amaero is inserted into your code every time you issue amacro eaI1. A macro thus executes faster than a subroutinebecause no BSR-RTS is involved, but it uses more memorybecause it is repeated in the program whenever it is uied.

3-7s

3*76

-vo
E-I

OQ

_

a0
-l)Eq)
A
-t

The QWERTY Debugger

The Q-68 board contai ns an B Ki lobyte ROM which holds a
comprehens i ve debug package ("DEBUG ") for tes t i ng your
programs. This chapter tell"s you how to use the many
features of the debugger.

Here

1

Considerable emphasis
easy to learn and use.
use, you won t t want to

68gAg

2

WHY USE A DEBUGGER?

are some of the things DEBUG does for you:

I t provides a window into the 6BggA processor . You ean
look at everyth i ng i ns ide-- the address reg i steES r the
data regi sters r the program counter and the status
register.
I t lets you run your code one instruetion at a time.
You can pause between instructions and view resul ts.
I t al lours you to stop program exeeution at any
predetermined address and inspeet what is going on.
This is done by setting breakpoints. You can then
resume execution exactly where your program left off.
I t al lows you to inspect and alter memory. You ean look
at memory in HEX format, in ASCII to spot character
strings, or in 68ggg instruction form.
I t lets you put labels on memory locations to help you
reeognize important information.
It provides error notifieation and
runn i ng program.

recovery for your

I t can run in a "Remote" mode, in which t'keystroke"
eommands are passed to it from a BASIC (or machine
language) progrdffi r rather than from the Apple I I
keyboard.

\2
J

4

5

6

7

has been given to making the Debugger
onee you beeome fami I i ar wi th i t ' stest your programs any other way.

L

4-t

Before descr ibing the Debugger t let's consider the kinds oferrors you are likely to make in writing 6\ggg code. We t llsee that the most di ff icul t types Lo track down and fi x arehandled easily by the Debugger.

TWO KINDS OF ERRORS

There are two general types of errors. Those that are made
when you write and assemble the program; and those made asthe program actually runs.

AS S EI'{B LY ERRO RS

The Assembler checks your typed instructions for
correctness. Syntax errors account for most errors the
assembler finds. These are mistyped or incorrectly
speci fied instructions. For example i f you type

MOV A2 rA I
you will get a "BAD OPCODETI errorr since you typed I,IOV
instead of the reguired I,IOVE.

Likewis€r the code line:
I"IOVE A2, #45

wi L l generate a "BAD ADDRESS tt error r since you can t t move
data into an irnnnediate value. Both of these are syntax
errors "

The assembler also reports errors related to the correct
operation of the assembler. If you define the same Label
twi c? t you r*i 11 get an EXT'RA DEE' INI?ICN error. I f you try
bo assemble eod* into mernory which contai.ns the assemblerprograrnr yoa t*iIL get a HEM PROTECT error"
(Appendix B lists all the Macro Assembler errotr messages) "

i'1T*a'-

RUN ERRORS

You might think that once you have cleaned
which the assembler has reported, your code
Not so I There are errors which no assembler
example, consider the fol lowing staLement :

up
is

all the errors
bug-free.
catch. Forean

Ir,lOVE.L $4S (A2rA3), (A4)+

The assembler is happy, sinee you have typed a legal
instruetion with a legal address mode. But what if, as your
code exeeutes, the eontents of A2 and A3 become even?
Adding $45 would make the resulting address odd, which is
forbidden for word and long word addresses. (I f you are
perplexed about words and long words, see sect i on B of th i s
manual on data sizes).
The assembler can't possibly anticipate all
and A3 will assume as you run your program.
class ic case of a run-time er ror which can' t
an assembler.

-

values that A2
This is a
be detected by

Here t s where the debugger helps out . Us ing the extens i ve
Exception faeifities built into the 689A8, the DEBUG program
catches these er rors and not i f ies you when they occur .

STARTING DEBUG

tet I s walk through a typical assembLy/debugging session.
Boot the QPAK-68 system disk, and select item 4 if you have
a language card or a IIe; item 3 if you don't.
After the assembler is loaded and running, indicated by thetr.'r prompt, type t'LOAD DEBUG.TEST". Back at the tt.tt prompt
again, type "LIsTr'.
This is the test program we are going to run with DEBUG. It
simply inerements the registers. For a little variety,

4-3

NOTE: I f you are not fami I iar wi th Except ions in the 68900 ,please take a moment to read the EXCEPTIONS seetion in part
7 of this manual . There you wi l1 learn that run-time errors
cause program exeeut i on to be d i ver ted through preass i gned
memory loeations, where you (or the DEBUG program) can put
addresses of routines to handle the error condition.

Register D5 is incremented five times. The prcgram loops
continuously, and never stops.
Now type 'rAS|,i". The Assembly listing wiLl scroll by. The
6Vggg object code is placed at location $fg gg .

At thi s po i nt you want to actual lyit. To do this, type ''DBUG". Thi
run your

s starts
code and test

up the DEBUG
I I screen:program. You should see thi s on your Apple

REGISTERS
* * * REG * *CONTENTS ** * * * * * REG * *CONTENTS * * * *

Dg >gg0ggggg
Dl ggfrggggg
D2 gggfrgfrgg
D3 gggufigga

Ag gggggggg
A I gggggggg
h2 gggggggg
A 3 guggfrggg

A4 ggsgsggg
A5 ggggggfrg
A6 figgggggg

D4
D5
D6
D7

gggg6ggg
gg frufrsgg
ss fr ggag g
frgggg uug

*
*
*
*
*
*
*
*
*
*
*
Jb

*
*
*
*
*
*
*
*
*

SsP:A7 ggglSB0g
USP: A7 gggfi&fifrt

* * * * * * * * * * * * * * * * * t * * * *T-S.-- I I I -_--Xt{ZVC*
*
*
*
* gaLgfifr ADDQ.W *IrD0

SET CONTENTS:
* *' * -&. * * * * * * * * * * * *

PC &gggLfrgg SR ggLgfiLl 1G Ufrfififi$fr

Cnce DEBUG i s
Befsre do i ng
br eakp* i n ts ,

running, you can starL, up yCIur program code.
sor you can *Narrttne your codeu set up
and initiaii":ie registeHso

ilEBUG gives yeu a uniqu€ way to select whi*lr *f its options
you wiskr to use. Each debug made uses a distinctive display
screen " Rather than mernor i z ing several commands to seleci
the var ious mod€s s you use the aru*w keys tc cycl"e f rom o$e
screen to aElsh,her "

The scr€:ens cyc le between these f i ve mo**.$ l

4*4

*

Registers
Memo r y
Disassembler
Breakpo i nLs
He 1p

Each screen has a title block at the top
you won't have any problem knowing which
viewing.

of the d
of the t

isplayr so
i ve you are

Now experiment a bit with the left and right arrow keys to
look at the f i ve DEBUG screens .

A11 screens contain a command window that Shows you the
avai lable opt i ons for the screen . H i t the ESC keY to eye le
the options in any window. We' 11 descr ibe the five screens
in detail, but for now remember this simple two step
proeess:

I, Select the di splay you want hy eycl ing the screens wi th
the right and left arrow keys.

2 Select the operation you want inside a screen by eyel ing
the COMMAND window with the ESC key.

FOR THOSE WHO CANIT WAIT

Now we're going to quickly do some things with DEBUG. If
you're the methodieal type, and wish to completely learn the
DEBUG system before actual Iy trying i t out r Please sk ip
ahead to the next section, "THE FrvE DEBUG SCREENS".

Using the left or right arrow keyr s€leet the DISASSEMBLY
screen . See the DEBUG.TEST program? The defaul t di splay
address is $fgAA, which just happens to be the default
origin for the Maero Assembler.
Hit RETURN a few times to scroll the disassembly listing. As
you seroll past location $191E, the end of the test pr6gram,
you will see some interesting garbage. This is DEBUGTs
attempt to translate what happens to be in Apple memory into
68ggg instructions. Some memory values will translate into
legal instructions; some wi 1 1 not. Those which don I t are
indieated by "???7".
Now hit the comma key a few times (this is the same as
shift-comma r oL left earet). The listing scrolls

4-5

backwardsl This is no mean trick--we'Il tell how vre do itlater.
Let t s disassemtrle a di f f erent part of memoEy. See the "SET
ADDRESS rr message at the bottom of the screen? H i t ESC a
f ew t imes and th i s li ne changes to SET COI,IMENT and back to
SET ADDRESS. This is the command window showing you the
avai lable DISASSEMBLY screen options. Cycle it to SET
ADDRE S S .

Now type Lgg84
DEBUG. DEBUG

r E€turn. This is the starting address foris looking at itsetf I

I
2
3

Enough of this. We donr t want to tell you how easy it is todisassemble the DEBUG program.

Use the r ight or left arrow key to select the REGISTERS
screen.
See the ttpgtt value of gtggLggg? Thi s i s where programexecution will start. The srnall window at the bottom of thescreen shows you the disassembled instruction residing at
$fggg--ADDQ.w *frDA, the first instruction of our test
program.

Now hit CTL-T once" Three things happen:

Reg i ster Dg changes from g to I.ItPgtt changes f rom Lgilg to Lggz.
The disassembled instruction scrolls upr and a neb, one
at address Lggz is shown.

You actually saw the ttADDQ *lrDgf instruction executel
The disassembly window shows the next instruction up for
executiorl . Hit CTL-T again and this one executes. Keep
hi tting CTL-T and watch the instructions and the registeEs.
You see everything: The last instructioo r the next
i nstruct i on , and t,he ef f ect on the reg i ster s I

Those of you wtro fire lucky enough to obrn an Apple I I e, hold
down th* CTL and T keys. This produces a fast automatic
sinEle-step* "f ou I I and IX -plus oidners have to hold down
three keys, REPT, CTL and ?" CTL-T means TRACE, which lets
you execute instructions one step at a time.
Now type CTL-G. Thi s runs your program at f ul" I speed .
Unfortunatelyo this program continuously Ioops, and there is
Ro way to slcp itg
Except hy hi tti ng CTL-B (BREAK) , thab is " Try it now" Hear

4*5

the 1itt1e tf ziptr sound? you'Il hear this anytirne a breakoccurs (when you use CTL-B, or when a breakpoint isencountered). Now look at the registers. They have countedup pretty far , havenft they? Why is D5 di fferent than theothers? Because 5 was added every time I was added to theother registers.
Try a few more CTL-Trs.
where the break occured.
al 1 you want, and DEBUG
track.

Now you t re s i ng Ie stepp i ng fr om
You can use CTL-T, CTL-G and CTL-B

keeps the program executing on

You ean watch any of the DEBUG screens as your programexecutes. For example, you probably would want to watch the
MEMORY screeR tf your program alters memory values. you canswitch baek and forth between screens as you single step orrun your code w i th CTL -G .

Now for a surprise. Hit CTI-V. There's the source listing
tha t was on the screen bef ore you i ssueel the "DBUG "command. CTL*V l-ets you roatch Apple II video screens asyour code runs. You t re now looking at the Apple, s TEXTsereen. Hit CTL*V again, and then again. you should seegraphic garbage. These are the (uninitialized) Apple HIFESsereens *1 and *2. One more CTL-V takes you baek to the
DEBUG screen.
Now let I s set a breakpo i nt . Make sure that youthe DEBUG screen (use CTL-V if you're lockinq atscreen), Now select the BREAKpOINTS screen witlrright arrow,

are viewing
an Appl e
the left or

Notice that the command window shows "SET ADDRESS". Type101E, RET. You've just set your first breakpoint. Go backto the REGISTERS screen. Let I s start the program at thebeginning, dddress $fggU. Hit CTL-P. The command windawnow shows r "SET pC: " . Type Lggg , RET. This is how you
spec i fy the run address "

Now hit CTL-G for GO. The program starts at your ',pC:"address, $19il6. Hear the Breakpoint sound? rfre message atthe bottom of the screen shows you which breakpoint youhit. Notd hi t CTL-G a few more times " Each time greakpoint
*g is encounter€d, all the registers in the program havebeen altered.
If you wish to clear the BREAKPOINT
seleet a different screen, and then
screen.

*g message, simply
reselect the REGI STERS

4-7

With this br ief tour of DEBUG I s capabi 1i ties r w€' re nowready to investigate the intr icacies of the DEBUG program

,1,* S

THE FIVE DEBUG SCREENS

Before looking at the five modes in detail, letrs take a
look at the general sereen layout.

REGISTERS
* * * REG * * CONT ENT S * * * * * * * REG * * CONTENTS * * * *

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*

Dq >gaggggag
D1 ggga$gga
D2 0ggggggg
D3 A0gggggg

Ag gggg6gga
A 1 gggggggg
A2 Aggggggfr
A 3 Ag6ggggg

D4 gggggggg
D5 ggg6ggag
D5 gaggfrggg
D7 Ag6gAgga

SSP:A7 fr9918800
USP:A7 gggggg6g

*** * * ** * * * * * * * * * * * * ** *T-S--I I I ---XNZVC*

A 4 Aggggggfr
A s gggguggg
A6 gggagggg

PC gggaLgag sR frgLggl\10$gsagag

ggLggg BRA ssssLg3 4

SET CONTENTS:

Da ta
Wi ndow

Itatus
Wi ndow

*
*
*
*
*
**

The screen is divided into two windows, the Data Windowr and
the S taLus Wi ndow. As you eye Ie through the f i ve sereens ,
the Data Window changes and the Status Window remains the
same.

THE DATA WINDOW

The top line shows the title of the active screen.

The second line eontains the eolumn headings for the data
displayed in the window.

The next four teen lines show the var ious DEBUG data
screens. Here you will see regisLers, memory locations,
disassembled 68A96 instructioos r and breakpoints.

4-9

THE STATUS WINDOW

The Status Window appears in the bottom eight lines of the
screen.
The first line, which forms the top of the Status Windowr
contains the Status Register bit names. These are!
T Trace mode
S Supervisor State
I I I Three Interrupt Level bits
X Ex tend bi t
N Sign (negative) bit
7, Zero bit
V Overflow bit
C Carry bi t
Unused bi ts in the 16 bit Status Register are indicated by a
dash (-).
The second line shows the values of the Program Counter (PC)
and the Status Register (SR).

When
your
ttPCtt.
rr pC rr

wilI
value

you start execution of your code with a CTL-G command,
program star ts (or resurnes) at the address shown by

I f you are single stepping through your program, the
value indicates the address of the instruct ion which
be executed next. I f ycu hit a breakpoiot, the ttpgrt

indicates the next instruction to be executed.
You may use the CTL-P command from any Data Window to change
the value of ntPC". For example, if you want to start
executing a piece of test code at address $22@0, use CTI-P
to se t rr pc rr to fi226v e then type cTL -G (GO) .

The remainder of this Line shows the indivi.dual bits in the
Status Register, You may use CTL-S from any screen tc
change these.
The next tr*o lines sLtow disassembled 688frV instructions. The
l.ower l ine shows the instruction to be executed next. I t is
the one whi"ch residee at the indicated tcpgtt address " The
upper 1i. ne shows the i nstruct i on wh i ch was las t executed .
In the Trace rnode, rohere you use CTt-T to single-step
through your proEram, the two 1i ne instructi.on window
"Esrol"J-stt up every time ycu traee one instructi*n"

4 *Lfi

The next l"ine in the Status Window shows the avai lable
eommands for the currently displayed screen. Whatever you
type at the keyboard is echoed on this command line. The
commands in thi s window eycle when you hi t the ESC key. fn
this way you ean immediately see the avai lable options for
every screen mode without referring back to this manual"
The bottom 1 ine of the S tatus Wi ndow looks I ike the bottom
of a f rame most of the tirne. But when an exception or
breakpoint is encounterBd, the appropriate message appears
here.
The Program Counter and Status register are included in the
Status Window portion of the screen to allow you to jump
baek to your program from any DEBUG di splay screen. To do
this, you type CTL-G or CTL-T to resume operation at the pC
value shown in the windowr or type a new PC value then CTL-G
to resume sornewhere else"
Now that we've discussed how the screens work, letfs take a
look at eaeh of them in detail.

4-ll

WerIl start with the HELP screen, and use it to describe
most of the command options for DEBUG"

THE HELP SCREEN

HEL P
KEy *FUNCTION*** * * ** * * * * ** * t ** * * ** * * *

ESC CYCTE WINDOW COT4MANDS

CTL -B
CTt -D
CTL -G
CTL -P
CTL -S
CTL -T
CTL-V
CTL -W

BREAK
DUMP SCREEN TO PRINTER
GO TO PROGRA},I
PROGRAI"I COIJNTER (Srr I
STATUS REGI STER (SET 1

TRACE ONE PROGRA},T STEP
VI EW APPLE SCREENS
sET DATA WrDTH (r'rEM ONLY)

*
*
*
*
*
*
*
*
*
*
*
*
*
*

* * * * * * * * * * * * * * * * * t * * t *T-S -- I I I _--XN ZVC* *
*
*
*
*

PC ggggLg&g sR gglggLlLggggugga

wfrLfr9fi BRA ggsgLs3 4

HIT KEY:
* * * ** * * * * ** * * * * * * * * * * *** * * *' * * * * ** * ** * * * *

Lef t and Right Arrow Keys...,. c o. c. - 6 c. ?.....CYCLE SCREENS

The right arrow key
leit arrow key moves
t i t les at the bc:p of
tabs , vlh i ch rnove i n

mCIv*s you ttfCIrwerdu* one scre*n, and the
Notice that the
tike in,lex

you ttback tt one
the screen are

tkre direction of
Scrgeft "arranger?
the &rrow keys"

Left and Right Caret Keys*oc6*&.".SCRO[,L SCRnnN UP *R DGWN

These keys mclve date in the Data -E{tndaq** tr* ttr* MHffiORY and
DISASSEMBLY screen# s thr<*y scrcl1 data rlp anc down .

r{ Itt**-t4:

* *

*
*

In the REGISTERS screen, they move the register pointer .

In the BREAKPOINTS screen, they move the breakpoint pointer .

When using trCTL-S'r to set the Status Register bits, they move thecursor which indicates the update bit.
These keys are actually "Shift-commarr and "shift-period" onthe Apple II keyboard. You donrt need to use the shift key.
DEBUG interprets (r) as left caret and (.) as rlght caret.

Escape Key... o.... a........,. ...CYCIE WINDOW COI'IMANDS

trggqtt eycles the command options in the Status Window to
show you the ava i I able cho i ces .

CTL-B. r .BREAK

CTL-B initiates a 68AA9 program break. It stops execution
of a program started by CTL-G from DEBUG, and returns
control to the DEBUG program. When a CTL-B break oeeurs,
the PC value in the Status Window indicates the address of
the next instruetion to be executed.
CTI,-B functions like a breakpoint you have inserted using
the BREAKPOINT screen, exeept it is manually activated from
the Apple II keyboard. Unlike a breakpoint, you canrt
determine in advance where Lhe break will occur in your
program. CTL-B is usually employed after long periods of
embarrassing silence, when your program seems to be running
but apparently is not doing the right thing.
Af ter using CTL-B, you ean single step your program (witn
CTL-T) to find out what is going on.

CTL-D.............. t..,..............DUItIP SCREEN TO PRINTER

Inlhen you hi t CTL-D, whatever is on the Apple I I
sent to the currently selected output device.
characters, such as the inverse blank used for

screen i s
Nonpr i ntable
the frame,

4-13

are printed as asterisks (*).
If you have not previously initialized a printer card,screen dump appears on the Apple II screen in a ratherbizarre form. Because the character codes on the Applescreen do not represent true ASCI I values, they must be
modified before sending them to a printer"

the

II

These ASCI I values appear as inverse and flashing characterson the Apple I I screen.
If you see this type of display afteryour printer card is not selected r oE
pr i nted character s to the screen . To
the screen , s impl y use the ar roh, keys
screen, then back to the des i red one .

usingit is
clear
to go

cTL -D , ei ther
set to echo
the garbage from
to another DEBUG

CTL-D works only if DEBUG has been started with the
a s semb Ie r tt DB UG rr command .

CTL-D pr i nts the ent i re 24 I i ne DEBUG screen ,nine blank lines. This fits two DEBUG screens
standard 66 I i ne pr intout.

foI lowed by
onto a

Appendix D contai.ns a discussion of how the CTI-D function
i s impl emen ted .

CTI-G starts or resumes execution of the 68ggg program from
the address shown as ttpgtt in the Status window. I f this is
not the address you want, change it with the CTL-P operation
first.

CTI-P.. '. a e i o.. r. e * 6.6. c. a..............Sgt Program Countgr

CTL-P aI lows yau to change the val-ue of the Program Counter
displayed in the Status '+rindow. The CTL*G tGOi and CTL*T(Trace) coffimands start execution of your 6S968 progra$i at
this address.

i 1At*I-*

CTL-S. . . . r r Set S tatus Regi ster

Just as you can speci fy the starting pC valu€ r you can alsopreset the Status Register bits before exeeuting your code.To save the trouble of entering sixteen ones and ieros everytime I a sereen cursor is used to select individual bits.Use the left and right earet keys to cycle the cursor overthe si xteen bi ts. To update a bi t, type the value I or g.
When you are done, press RETURN.

DEBUG remembers the last bi t updated , and posi tions thecursor over that bi t the next time you type CTL-S. Thisal lows you to qu i ckly ehange the same bi t every time you usethe CTL -S funct i on .

NOTE: You ean change the unassigned Status Register bits(shown with a dash) if you wish, but they have no effect
when the 68g08 sta r t s runn i ng .

CTL-T................................TRACE ONE PROGRAM STEP

CTL-T lets you traee your program one step at a time. InTrace , a single instruction is executed, and then eontrol isreturned to DEBUG. Whichever screen you are viewing remainsdisplayed during TRACE.

Tor example, if you wish to watch the registers changeinstruction by instructioo r seleet the REGISTER DISpLAysereen and aetivate Trace. Every time you hi t CTL-T, youwill see the register activity.
Note that you can single-step quickly through your code byholding CTL-T down on the IIer oE using the nfFt key (as youhold down CTI-T) on the II+.
To start the trace operation at any address, first set ttpgrr
using the CTL-P function r then use CTL-T.

CTL-V....'.......'.......................VIEW APPTE SCREENS

The Apple I I eontains preassigned memory buffers for three

4-1s

displays. These are shown below:

$sass-$s7FF
$2ggg-$3n'rn'
$4ggg-$5n'rn'

Text Screen
H i -Res gr aph i cs Page I
H i-Res graphics Page 2

The View command lets you look at the Apple Text Screen and
the two high resolution graphics screens whi le debugging
your 6Vggg code. View is a cyclic command. Repeatedly
pressing CTL-V causes four displays to cycle:

DEBUG
T EXT
HIRES Graphics Pag
HIRES Graphics Pag

Pressing CTI-F steps the display screens in the reverse
order. This comrnand is not shown in the HELP screen.
DEBUG uses the Text Screen f,or display. What if you are
debugg ing a 68gg8 program which also wr i tes to the text
screen? Whatever your program puts on the text screen would
be wiped out every time DEBUG uses the screen.
To prevent thi s, i f you are viewing the Apple text di splay
during GO or TRACE, the DEBUG program copies the text screen
data into it's onboard RAM prior to using the screen, Then,
j ust bef ore your code is executed , Lhe contents of the RAI'I
are copied l:ae k into the primary text screen memory space "

II!'IPORTANT NOTE: This screen save occurs ONLY if you are
v iewi ng the Apple I I I s pr imary tex t screen dur i nE
debugg i ng *

Whi l"e you trace your program, DEBUG rernembers which di splay
you last viewed. For example, if you are debugg ing a
plotting routine r^lhich uses H ires screen *2 , you can use
CTI-V to di splay thi s graphics screen , then repeatedly use
CTL-T to watch the plotting taking p}-ace one instrue t ion at
a Lime "

If you want to check the register contents during such a
trac€r you can use CTL-V to take you beck t* the DEBUG
screen , Lhen press the r i gl:t ar row k*y o if nee essary, te
vieve the REGISTERS screen" Using CT[,-V again wiLl then kake
you back t* the H I RES screen d i splay "

el
e2

4-] 6

.\- CTL-W. ..Select displayed data width

When viewing the I,IEMORY screen r you ean di splay three
different data sizes--byte r word, and long word. Hitting
the W key in ["1EI.{ORY mode cycles between the three.

4-L7

THE REGI STERS SCREEN

REGI STERS
* * * REG* *CONTENTS ** * * * * * REG **CONTENTS ** * *
*
*
* Dg >gggggggg Ag gggggggg
* Dl gggggggg A I gggggggg
* D2 gggggggg A2 gggggaga
* D3 gggggggg A3 gggggggg
*
* D4 gggggggg A4 gggggggg
* D5 gggggggg A5 gggggggg
* D6 ggggggga A5 gggggggg
* D7 gggggggg
* SSP: A7 gggLSSgg
* usP:A7 ggggggga
*
* T -S -- I I I ---XNZVC*

PC frgggLggg sR gfrLggLlIgggggggg

gfrLggg BRA ggggLg34

SET CONTENTS:
************************t***************

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*

This screen displays the eight Data Registers and the nine
Address Registers inside the 68098. Register rtATrr is shown
as two registers: t'SsP:A7tr and t'UsP:A'7" o This helps to
clar i f y the t'{otorola terminology in which two systern stack
pointers have the same name, "A7"" (See Chapter 7, "Two
Stack Pointers Narned A7") "

A single command is used in the REGISTERS sctreen: "SET
CONTENTS T' . The lef t and r ight caret keys rnove a po inter to
each of the registers. To change a register va1ue r simpfy
type in the new valrr€r foLlowed by RETURN.

If you type more than I digits, the excess leading digits
are ignored. I f you type fewer than I digi ts, the remaining
Ieading diqits are set to zere" For example, typing the
value rrl* and RETURN enters the value "ilggfigff$lr'. All data
is in hexadecirnal. You do not have to supply a leading
ttcrtVo

When you use GO sr TRACE, the values shown on bhe REGISTERS
Ecreen are copied into the 68fr98 regishers prior to
beginnil:g progr&m execution,

4*l-E

THE MEMORY SCREEN

MEMORY
* **ADDRESS **CONTENTS **ASCI I *CO[.{},1ENT ** * * *

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*>
*
*
*
*
*
*
*

6ggggg ggal88g0 @AHe

FFFFF O

FFFFF 4
FFEFF 8
FFFEF'C

gasg6 4
gg gg s8
agg ggc
sgagLg
g0ggL4

gggLggE4
gggg2F 4A
agag2Y 6A
gags2ET 6
ggag2ETC

@ AGD
@@/r
e@/t
@ 0/v
ce/ |

* * * * * * * * ** * * * * * * * * * ** *T_S __ I I I ___XN ZVC**PC gtggLwgw SR gglggLl 1 0 ggaagag*
*
*
* ggLggg BRA s0g gLa3 4

*
*
*
-- __- SET CONTENTS: ********************************** *******

Th i s sereen al lows you to scan the 6\gggineludes all of the Apple memotyt as well
ROM and RAM. You may view and alter the
wi th thi s screen .

memory space. This
as the Q-68 board

contents of memory

The rr>rr and rr<rr keys are used to scroll data up and down.The RETURN key also scrol ls the sereen up.
The memory data is shown in 32 bit (long) form. To changethe data width, use CTL-W. This cycles the displayed datawidth in the f ol lowing sequence :

Long--Word--Byte--Word--Long--Word--Byte--Word, (etc.)
DEBUG remembers the data size for the MEMORY screen. If youhave seleeted Word length (for example) and leave the MEMORYsereen, the data size wi11 still be "word" next time you
se I ee t the I\,1E},1ORY sc r een .

Memory data is displayed and entered in hexadecimal. Noleading rr$rr is required.

4- 19

The contents of noR-existent memory are shown as rt****tr
The ASCI I column is blank for non-existent memory.

Pressing the ESC key selects three commands:

I
2
3

SET CONTENTS
SET ADDRESS
S ET COI,1},TENT

Insert data into a memory location.
Select a new mernory location.
Type up to Lg characters which'rmark" a
particular memory location.

SET CONTENTS lets you type in new memory values (in hex).
SET ADDRESS allows you to vtew/change a different portion of
memoEy. This is the command which appears whenever you
select the I,!EI,{ORY screen.
SET COI',tl',lENT allows you to ttta€lnt certain memory locations
with words of your choice. These comments are stored in a
table and shown anytime the corresponding memory locations
are displayed. Up to sixteen ten-character comments may be
st,ored.
One use for the comments i s to ass i gn labels to breakpo i nt
addresses. Then when the breakpoint is hi t, the word (which
might say something like "de1ay") will appear on the
screen.

4-20

THE DISASSET.{BLY SCREEN.

DISASSEMBLY
*ADDRESS **OPCODE **ARGS ** * * * *COMI,IENT ** * * *

>gaLggg
ggLga 4
ggLgfr8
ggLgac
ggLaLg
agLaL4
0gL01A

BRA
BRA
BRA
BRA
MOVE . W
tEA
CtR. B

gaagLg34
ggagLg22
ggawLgE 6
gga0l0FA
*g6EA, D7
60918 g g2 ,AA
(A0) +

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*** * * *** ** ** ****** ****T_S__I I I ___XNZVC**
PC gggglgfrg sR gsLgaLllg Tggaagg*

*
*
*
*
*

gglgAg BRA sgggLg34

SET ADDRES S :***************************************

*
*
*
*
*
*
*

Two
and

commands apply to thettsET cot*lMENT". These
DI SASSEMBLY screen r "SET ADDRESS "
f unct i on exact ly as i n the MEI.,IORYscreen.

The rt;rr key (or RETURN) steps the display up to advance onedisassembled instruction. The rr<rr key moves the display oneinstruetion back in memory. As with all disassemblers, youmust start the display on a legal instruction address forthe listing to make sense. I,,lemory values which do notcorrespond to lega1 68ggg instructions are shown as 'r????rr.
The scroll keys allow you to move up and down in thedisassembled listing. When you scrolt down (movirrg
backwards through memory) DEBUG goes back to your starting
address and works forward one less instruction. you, 1lnotiee that the further away you are from the starting
address, the longer the backwards scrol 1 tak€s. To speed i tup, simply speci fy a DISASSEMBLE start address closer to theeode you are exami n i D9 .

4-2L

*
*
*
*
*
*

I

A POINTED ISSUE

When you use the SET ADDRESS command in the },1EI.,IORY or the
DISASSEI'IBLER screens, should the display address for the
other screen change to ref lect the new d i splay address ?
This was a hotly debated issue among the Qwerty staff.
One school of thought has i t that you want the di splay
addresses to tttracktt. When you scroll one of the screens,
the other should follow it in memoty, even though it is not
currently di splayed .
The other view is that you might want to watch a particular
section of memory as you trace program execution. A good
use of this feature would be to watch a stack in operation.
For example, suppose the stack is at $19 4gg, and your
program is at $1ggg. I f you are watching your program on
the DISASSET'{BLER screen and then swi tch to the ME},IORY screen
to look at the stack, you DON I T want the memory screen to
show you your program at $fggg. You want it to stay at
$ 18 4gA, where the stack i s .

Both points are valid, so $re have provided a mechanism to
operate both $rays. There are two rules 3

Whenever you set the display address to the same value
f or the },IEMORY and DI SAS S EMBLER screens , the MEI'IORY
display address tracks the DISASSETTBLY display address
In other words, the I,IEI-{ORY screen ntscrollstt when you
scrol I the DI SASSEMBLY screen , even though you are not
v iewi ng the MEI,IORY screen .

This is the $ray the screens are initially set in DEBUG,
with the initial display address for both screens set to
$1ggg.

Whenever you set different addresses for the two
screens, they independentl-y show their own display
addresses.

An inverse !r;rt appears in the lower right corner of the
Status window when the display addresses are locked
together.

2

4-22

THE BREAKPO I NTS SCREEN

BREA KPO I NT S* * * * * * ADD RES S * * VALU E * * COU NT *COI,IMENT * * * * *

* r *T _S __ I I I ___XN ZVC* *PC AgggLggg sR Tulgglllg ggfrTggg

*
*
*

*L
*2
*3*4
*5*6*7
*
*
*

*
*
*
*
*
*

ggLg$g 77 ? ? COMMENT # T

*
*'
*
*

SET ADDRESS: ***
There are three command ehoices in the BREAKPOINTS screen.

SET ADDRESS.

Set the address at which a break is to occur"

SET COUNTER

The count value (in hex) tel lsover the break address before
operation.

DEBUG how many times to skip
actually doing a break

The Counterralue is convenient forsubroutines. you might want to seesubroutine after the hundredth timeIn thi s case , set the counter to 63

testing repetitive
the result of a
through , for example.(hex for 99).

4-23

As the breakpoint address is encountered, the onscreen
COUNTER value is decremented . When i t hi ts zero , the
program break is initiated.

SET COI'{},1ENT

This is the same t'SET Col-{tlENTr function as used in the
MEI'IORY and DISASSET{BLY screens. The comment appears in the
Status Window when the breakpoint is hit.

TRAP *T5

When you set a breakpoint, DEBUG goes to the address you
have spec i f ied and retr ieves the 16-bi t word i t f inds there .
The "Value" column in the BREAKPOINTS Data Window shows this
l-6-bi t word .

When you use CTL--T or CTL-G to begin execution of your
program, the word at each breakpoint address is replaced
with a "TRAP *15 " inslruction. When you hi t a breakpoint,
the or ig inal value at the breakpoint address is restored.
Therefore r you wi 1 I never see the TRAP *15 instruction used
for breakpoints when you disassemble your program, even if
breakpoints are set.
The "TRAP tI5 n' instruction used by DEBUG is stored in the
first word of onboard Q-68 RAl,l ($f8ggfrl" You can chrange
thi s to another trap value i f you wi sh, by replaci ng these
two bytes wi tn a di fferent TRAP instruction. This
replacement must be done by your test code, after DEBUG has
s tar ted .

4*2 &

EXCEPTION VECTORS

DEBUG instal Is nine exception vectors when it is started.
The vector addresses point to routines wi thin DEBUG which
display the exception type when any of the nine is
encountered. The fol lowing table shows the vector types and
the 68gg8 addresses at which DEBUG installs them:

$as8
$ssc
$6Ls
$ 014
$ 018
$ 0Ic
$s2a
$sze
$s2c

Bus Error
Address Error
I I legal Instruction
Divide by Zero
CHK Instruetion
TRAPV Instruction
Pr ivi lege Violation
LgLg Instruetion
1111 Instruction

(Remember that to translate these to Apple I I addresses, add
$8gal .

When any of these exceptions happeosr DEBUG shows the
corresponding message on .the bottom line of the DEBUG
screen. The message appears no maLter which DEBUG screen
you are .riewing at the time. You must be viewing a DEBUG
screen, however , to see the message-- it wi 1 1 not appear on
the App1e text or HIRES screens.
I f you wish to override these vectors with your own program,
s imply add eode to wr i te new val ues (addresses) to the
vector locations. Remember, though, every time you start
DEBUG (with the "DBUG" command), the above DEBUG message
vector s are (re-) insta 1 Ied .

REI,IOTE MODE

DEBUG has a remote rnode, in which you can wr i te APPLESOFT
BASIC programs that mimie the Apple I I keyboard. In the
Remote mode, DEBUG looks at loeation $g0F'D for keyboard
input, rather than the normal $Cgg0 .

The Remote mode is started by executing a call or j ump to
Apple loeation $393 (77L deeimal) . The "Q-58. STARTUP.BIN'f
program must. be in memory f or thi s to work. Appendi x Dgives details on how to use the Remote mode.

4-25

DEBUG },1EI.,1ORY USAGE

DEBUG is contained in the B Kbyte EPROM on the e-68 board.The f i rst I32 bytes of the EpROl,I contain the sel f -testprogram descr ibed in Chapter 5. DEBUG star ts at $f0 gB 4 andends at $ l f FFF, the top of EpROt"I memory.

DEBUG uses the 2 Kbyte RAl,l on the e-68 board f or aIl work ingstorage. The SSP is located at $I8 6gg, and the G\ggg stackworks downward from there. The top two pages of onboard
RAM, from $186gg through $1A7FF, are unused by DEBUG. you
may use these 5LZ bytes for your own programs.
When you start DEBUG, the value of the SSp shown on thescreen is $leBgg. If you do not initialize the SSp yourself(from the Registers screen or in your program code) r your
supervisor stack will be at 9lggg[(a good place for it, bythe way) .

If your code is going to use the USp, be sure to initialize
the USP register to point to the place in memory which you
want to locate the user stack. (Section 8 " 4 discusses stackpointers).
The only Apple memory used by DEBUG is the TEXT screen, from
$4gg through $7r'r. DEBUG updates th i s screen by wr i t i ng the
memory directly.

USEFUL DEBUG ROUTINES

DEBUG conta ins some 69ggg subroutines which you can cal 1
from your own programs" These routines let you disassemble
one line of 6\ggg code, display hexadecimal numbers on the
Apple II screen, and make the breakpoint t'zip" sound.

DISASSEMBLE ONE LINE OF 6gggg CODE.

InitiaL Conditions:
Register Ag is loaded with the address of the the first byte
of the instruction to be disassembled. This must be an even
address (not checked by th i s subrout i ne) .

4-26

Calling Address: $1gE4A

Result:
The disassembled code is written to a 64 byte buffer
starting at address $181C8. This buffer will eontain arepl ica (in Apple display character codes) of the result you
see on the Apple screen when t$Afig code is disassembled.
For example, if you put the address of a non-68909instruetion in Ag and eal1 this routine, you will find thedisplay codes for the address, two spaces, and four question
marks in the buffer.
Note that the 64 byte buffer can accomodate the maximum
length i9gtfi instructiorl . DEBUG copies the f irst 4A columnsof this opeode onto the Aq-column App1e sereen.
nxit Conditions:
For a legal opeode, A0 is advanced to the byte fol lowing thedisassembled instruction. This will normally be the
starting byte of the next instruction. Repeated cal ls tothis routine wi 11 thus disassemble sequential instructions
without the necessity of reloading Ag every time.
For an i 1 legal opcode , Afi wi I I be advanced two bytes.
Reg i s ter Usage : al 1 except A7

PUT MESSAGE ON APPLE 4g COLUMN SCREEN

Initial Conditions:
A1: Screen starting address
A3: Start of message (Apple

Calling Address: $11ABB for
$llAC8 for
$lfACE for

($4ss-$7FF)
d i splay codes)

normal video
inverse video
flash i ng video

Result:
The message is written to the Apple text sereen.
The message string must have all character codes exeept thelast one stored wi th the MSB set to I. (ttris is done in the
Macro Assembler by preceed i ng the str ing wi th a ,'- ") . Thelast character eode of the message has its MSB set to q.

4-27

This is the "terminator" which signals the end of the
mes s age .

Exit Conditions:
A1: One byte past the end of message on the screen.A3: One byle past the terminator.
NOTE: DEBUG makes no check for messages that spill off the
d i splay. You need tc rnake sure th i s does not hippen . Thi swould happen, for example, if you try to put a 2g character
message starting at column 3A.

Running off the screen can have disasterous results in App1e
I I operation. For example, you could overwr i te per ipheralcard scratch Iocations.
Reg i s ter Usage :

NormaI di splay: D0
Inverse z Dfi, D6
Flash: D0, D5

DISPLAY HEX AND BINARY DIGITS

Initial Conditions 3

D0: data (right justified hex digits or 16-bit binary)
A1: starting screen address ($4gg-$7FF) .

Cal I i ng Address 3

One hex d
Two hex d
Four hex
Six hex d

$ T lBEE
$118F4
$ 1 IBFA
$rrcsfi
$rrcs6

is
is
di
is

ir:
i ts :its:
ts:

g
1

Eight hex digits:
I6-bit binary: $11C24

Result:
VaLue displayed on screen.
Exit conditions:
AI: next display address

4-28

Register Usage:

Hex z DA , D2, D3
Binaryz DA, Dz

ZIP SOUND

Initial Conditions: none

Calling Address: $11EEC

Resul t :

Sound heard when you hit a breakpoint.
Exit Conditions: none

Reg i s ter Usage :

D4, D5

4-29

4-36

ao--lIH
CDaa,

:a
€)H
IaH

-le)a

Chapter 5 SELF TEST

This section tells you how to use Lhe self test feature ofthe Q-68 board. We | 11 descr ibe a test procedure which usesthe onboard diagnostic program. For every syrnptom, we, 11tel1 you which Integrated Circuits are suspe-t. All IC's onthe board are in soekets, so they are easy to replace.
CAUTION: When removing or inserting IC's be sure that thepower to the system is OFF. Changing components with thepower on can cause multiple component failur€sr and severelyaggravate any problems you may be experienciog"

PRELIMINARY TESTS

Before testing the e-68 board, you should answer thefollowing questions:
1 Does your Apple I I run with the e-68 board removed? I fnot, you have a system problem which should be fixedbefore troubleshooting the e-68 board.

Is the Q-58 board in the eorrect slot? The softwaresupplied on disk assumes slot *4 operation. you can usea different slot if you reconfigure using item I of the
menu you see when you boot the epAK-68 disk.
Is the board pushed all the way down in the slot
conneetor ? I f not , try remov i ng and reseat i ng the
boa rd .

2

3

4. Are there two little jumper plugs in the upper rightcorner of the board? Compare your board with the boardphoto at the end of this section. your board shouldhave jumper plugs in positions Z and 3.
S ti 1 1 wi th us ? Too bad . I t appears that something might bewrong with the e-68 board,
S ince the board was thoroughly ehecked out and burned in atthe factory, the most likely cause of a fault is an IC thatwent south. The following proeedure takes you through aprocedure which is des igned to isolaLe a bad chip.

5-1

This test procedure assumes a few things" First, that you
don o t wish to take the time for a warranty repair, but
prefer to try to fix it yoursel-f " Secood, that you can
remove and replace socketed IC I s without mangl ing the pins
And third, that you have access to TTL parts, and can
replace certain ones which thre procedure reveals to be
suspec t .

THE OBLIGATORY WARRANTY STATET.{ENT

Don I t be afraid that using the following test procedure wi I1
void your warranty. As long as you put the board back into
the shape that you received it before sending it back, we I 11
honor the war ranty "

The warranty wi I I be INSTANTLY VOIDED, however , Lf you touch
the board with a soldering ironn or manhandle it. It
doesn't take much scuffing to break the delicate PC board
traces.
The main thing is to get you back on the airr so letrs get
started.
NOTE: When the procedure calls for removing an IC, use the
fol lowing method:

Use a smal l blade screwdr i ver t,o
j ust a I i ttle . Then pry up the o
I ittle. Alternate your prying on
IC out of the socket. This techn
the IC can later be reinserted.

pry up one side of the IC
ther side of the IC just a
botkr sides to ftrock" the

iqu
Mak

e prevents bent pins, so
e sure that you don I t

mar the sur face of the ci rcui t board wi th your screwdr i ver .

TEST PROCEDURE

I . Turn of f the Apple "

2 . P.emove the Q-5I boa rd .

Look at the upper r ight corner of the board . You I 11
f ind a si x pin heade r r wi th tr*o li ttle j urnper plugs
i.nstalled. The plugs should be i.n positisns 2 an,il 3.

Remove the jumper plug frorn positicln 3. There should

3

5*3

4

5

now be a single jumper plug in the middle (*Z 1

pos i t i on .

If there is a board in slot *4, remove it. Then install
the Q-68 board into slot #4. Make sure the board is
pushed down aII the way,

Turn on the Apple" You ean boot DOS if you wish,
although this is not necessaEy. You should get to the
APPLESOFT prompt (l).

6 Type CAIL -151 (ret). This takes you to the Apple II
mon i tor .

Now you are going to issue some control commands direetly to
the Q-68 board. The next step attempts to run the 6BATB
systern using onboard Q-68 board resources only" When you
removed the th i rd pos i t i on j umper , you enabled the onboard
test prograrns.

If your Apple is dead, and you cantt get this far, replace
all the chips listed in step 7.

7. Type COCl (ret). This turns on the 68A$8"

Look at the red and green 1 ights on the Q-6 B board . The
RED one should be oor and the GREEN one should be
blinkiog. If all is well, proeeed to step 8.

I f the RED I ight is not oo r replaee the fol lowing IC t s
and try aga i n :

A2
C1

7 4LS 74
7 ALS g5

If the GREEN light is not flashiog, we have a majorproblem. An OFF Green light means the processor is not
running,

F irst we' 11 remove some IC I s and retest. Turn off the
Apple , and rernove the Q-6I board .
Remove the f ol lowing IC I s (make sure A2 and C I are
installed, if you used the previous step):

5-3

A3
B3
A4
A5
C5

7 4L5244
7 ALS 37 3
7 4L5244
7 4L5244
7 ALS 05

7 4LS 393
7 4LS7 4

},TC5BAg8 CPU
27 64 EPROl,t wi th DEBUG L .A
2 Ki lobyte RAM
PAL (Qr-3)

D5
B6

NOTE: The ICrs above the dotted line connect to the Apple
II busr so if the Q-68 board hung up the Apple, these are
1 ikely culpr i ts.
How I s that f or a minimum 68gg8 system? You should have only
ten IC's remaining on the Q-68 board. Now plug the Q-68
board back into the Apple and try steps 4, 5 and 6 again. If
the green light now flashes, one or more of the chips you
removed might be bad--try replacing them.

I f chip replacement produces the flashing green light,
proceed to step eight. I f not r cElrry on here.
Wer re down to two possibi f i ties. E'ither the PC board itself
is messed up (check carefulty for scratches and bent-under
IC pins)r or one of the remaining ICrs is bad. Replace
those i f you can. S ix of them are garden var iety TTL, which
you probably can find if you have access to TTL chiPS. The
other four are avai lable from Qwerty:

C3
B2
c2
B4

I f you' re here, rather than step 8, plug the chips back in
and send the board back to us for repair.
NOTE: The chips aI 1 insert so the letter ing on them is
rightside up.

5-4

Weleome to step 8 ! If you got this far, your systemworks in a standal-one mode. Now we t 1l- extend the test
to i ncl ude the Apple I I memory "

The Q-68 board should be running now, with the red light
on and the green 1 i ght f lash i o9 "

There should be a single j umper plug in the middle (* Z Iposition.
From the apple keyboard, nt the monitor prompt (*) , type
C0C3 (ret) . This interrupts the 68g68, and sends it to
a program which rapidly cycles the Apple HIRES screen"
The red light should be oor and the green one should now
be off (stopped flashing).
NOTE: The 4 digi.t Hexadecimal number in the lower right
corner of the Apple I I screen i s the "checksum" of t:he
Q-68 EPROM. I t should mateh the value wr i tten on the
EPROM 1abe1.

Is the sereen flashing like vertical window shutters in a
s torm? I f so proceed to step 9.

I f the screen is cycl ing, but there are not clear vertical
divisions (f or exampl"e if random dots 1i tter the screen)
replaee A3, a 74LS244"

If the screen just sits therer replace the following IC's:

B

A3
A4
A5
B3
C6
B5
B5

7 4L5244
7 4L5244
7 4L5244
7ILS373
1 4LS frs
7 4LS 74
7 4LS7 4

If replaeing these ICos doesn't fix it, send the board back
for repair,
9 If you're here, the screen is eycling. There should be

a single jumper plug in position two. Take the jumper
plug which you removed from the third position at the
beginning of this proeedure, and install i"t at position
I, while the board is runninE. This forces a watchdog
timer BERR. (Read section 7.3 if you don't know
what BERR is) "

5-5

''.- If not, there are several possible conditions:

As soon as you install this jumper plug, the screen
should f reez€ t and the green li.ght should begin
blinkiog. I f so r you have successfulfy tested/ fixed the
Q-68 board. If not, try replacing the following ICrs:

D5
C5

7 4LS 393
7 4LS 05

I f this doesn I t fi x it, send the board back

If you have fixed it, reinsert the jumpers
and 3 , and reinstal I the board.

for repair.
into positions 2

5*6

Er3
(D
!t,,cts.x

X.-E
-tI
C)ea

Append i x A

l,taero AssembLer Operation and Memory Usage

CONFIGURATION REQUIREHENTS

The Macro Assembler runs in any
or Apple IIe with 4BK of RAI-I.
recommended. You wi 1 1 need at
disk.

Apple II, or App1e II plus,
A language card is
least one standard Apple

CONTENTS OF THE DISK

The disk you reeeived with your assembler is a standard
l5-sector DOS 3.3 disk" It can be copied with Apple's disk
copy prograrns, and the individual files are copyable with
FID"

There are three versions of the S-C Maero Assembrler on the
disk. "ASM.LCrr is the standard (language card) version,
which loads at $nggg . A second fi Ie, "AsM. LC 2" is a smal l
segrnent which loads into the alternate 4K bank of the
Language card.
The type rtrltr file named "QLOAD TCASM'' is a control (rxEC)
f i le used to load the language card f i les .

A second version, called t'ASPl .l,lBtt (for "motherboard") runs
wi thout a language card . I t loads at address $39 gg .

A third version, called "ASI.,!.MB .4ggg" is included to allow
programs which use the HIRES screen #1 to run without a
language card. It loads at $40A6, and thus is elear of the
HI RES screen * f at $Zggg-$3FFF.

This HIRES screen utilization is provided at the expense of
4 Kilobytes of memory which would have been used for source
code and symbol table storage (as with ASI"t.l'lB).

The best place for the assembler is in a language card, so
that maximum "motherboard" memory can be uti Ltzed, ineluding
the two HIRES sereens.

A-l

A number of rrlrr (assembler source) files are provided on the
disk to illustrate SBggg properties described in the second
sect i on of th i s manua I .
An Applesof t progratn caI Ied "REl'loTE. DEMOI i l lustrates the
remote mode of the DebuggcE. To run this one, boot the
system, choose item 5, and then type, t'RUN REI{OTE.DE}{Orr-

The 68ggg source program caIIed, t'OPCODE.TEST. SBggg" can be
used to exercise the assembler. You might want to assemble
and print this program to get aquainted with 6BAgg code
synta x .

MEMORY USAGE

The language card version of the Macro Assembler program
occupies $Oggg through $n'Zn'f in memory" The symbol tabLe
begins at $3ggg and extends upward; your source program
b"eins at the bottom of DOS ($96A9 in a 48K machine) and
extends downward.

This leaves an 8 kilobyte space from $lggg-$2FFF to store
object code.

The EXEC file which loads the assembler into the language
card confiqures it so that DOS thinks of it as the alternate
to the language in ROI'! on the mother board.

Dur i ng source program entry or ed i t i ng , memory usage i s
monitored so that the source program doesnr t grow so
large as to overlap the symbol table. Overlapping wilI
cauie the tt['1El'l FULL ERRoRtr message to print. During
assembly, memory requi red by the symbol table is moni tored ,
to prevent the symbol table from overLapping the source
program. overlubping wiII generate the t'l"tEM FULL ERROR"
message and abort the assemblY.

In additioor memory usage by the object program is
moni tored r so that it wi 11 not destroy the source program,
DOS, the S-C l"lacro Assembler, the symbol table, or switch
any | /O addresses. Therefor€ r i f the object program bytes
a.e di rected at any memory address between $3ggg and the top
of the symbol table, or any address above the beginning of
the source program, the "t'lEM PROTECT ERR0R" i s pr i nted and
assembly is aborted"
I f you are using macros wi th pr ivate labels, the pr ivate

A-2

label table extends f rorn $Off'f downward toward $ga gg.
private label table is also proteeted during assernbly.private label uses five bytes in this table.

The
E ach

CAUTION: Location $Bgg-$BFF are used to store 6AUTB
exception vectors. The top half of this area, from
$0egg-$OgFf correspond to interrupt vectors, and probably
wonf t be used by your programs. So in effect the usable
space for private labels is from $gAgg thrrough $OF'FF.

The assembler uses many loeations in page zero dur ing
edi ting and assemhly. Your programs should not tamper wi thpage zero loeations. Remember that Apple I I page zero
locations correspond to 6BggB address $ABgg loeations.
Page one ($fgg-$lrr) is used both as a stack and as storage
for various items" The high addresses in paqe one are used
for the staek. Tkre low end is used for a symbol, buffer and
for the pointers to Ehe 27 hash chains used in stor ing the
symbol table. The black from $L7 A through $lgr is used for
holding seareh and replaee strings by the editor, and for
.TI titles during assemhly.
Page two ($20A-2FF) is used as the keyboard input buffer.
The high end of paqe three ($3og-3FF) is used by DoS and by
the assembler. You must not change any bytes between $3ngand $39r. $3gg-3cr is used by the "e-68. srARTUp.Brt{'l
program, which is descr ibed in Appendi x D.

Loeations $4qg-7tV are used by Lhe Apple I I as the text
sereen buffer. 32 of these bytes are unused by the screen.
They are used instead as "scrateh" locations by per ipheral
boards such as the di sk eontrol ler and pr i nter inter face
boards.

Locations $806-$893 are used to st,ore the 6BggB exception
vectors.
Pr ivate label s, used in Macros, are stored f rom $r'f r
downward . I f you use pr ivate labels, you need to insure
that the pr i vate label table does not extend down into your
6BggB startup vectors. Each private label uses 5 bytes.

ROM USAGE:

The Assembler takes ful L advantage of subroutines inside the

A-3

Apple l'lonitor ROM. Here is a list of aI I the subroutines
used:

F94I
F94A
FB 2F

FBF 4
FC 1O
FC 1A
YC22
FC 28
EC 42
rc58
FC66
FC 9C
FCA B
FDgC
rDl 8
FD 84
rD 99
FDDA
FDED , FDF g
FEgg
FE 2C
FE89
FE93
FECD
FEFD
FF 2D
F['3A
FF69
FFA 7
FFBE
FTC 7
FFCC

Print 4-digit hex value from ArX
Print (X) blanks
Set text mode , fu1 I screen window
parameters
Advance cursor
Backspace cursor
tlove cur sor up one I i ne
VTAB to current CV value
An RTS instruction
Clear to end of page
Clear screen, Home cursor
Move cursor down one }ine
Clear to end of line
DeIay
Read next input character from keyboard
Read next input character through 938 r 39
Add char to input line
Print (YrX) in hex with dash
Print (A) in hex
Pr int (A) as ASCI I character
Display memory in hex
l'love block of memory
Set input to keyboard
Set output to screen
Write block of memory on tape
Read tape into memory
Print t'ERR", ring belI
Rlng beI1
Enter l"loni tor for l'lNTR commanrf
Get hex number
Process monitor command
Clear monitor mode byte
Table of monitor commands

A*4

Append i x B

Asseml:l-er ERROR MES SAGES

I f you make a mi stake, the MACRC Assen'ir1er wi 11 probably
catch yoi.r " Here are t"he er ror messages you may see *

*** SYNTAx ERROR

*** MEI,I r"ULt, ERR0R

*** MEr"i t'it{lt'ECT' IJRItcR

*** RANGE ERROR

* * * NO LABEI* ERROR

* * * BAD OPCODT] ERROR

*** EXTRA DEFINITION ERROR

* * * UNDET'I NED TABEL ERROR

* * * BAD SYMBOI, ERROR

Either you do not have enough
memory f or the souree prograrn,
or f,or the sorlrce plus the
symba 1- tab le CIr a tape read
error has occurred,

There i s
bad line

Your program tr i ed to
assemble into an aree
rnemo r y occ up i ed l:y the
assembi"er, the symbol
or ycur source code"
.TA 0r .TF direetives.

a misspelled command or
number.

af
table o

tJ se the

The re]-at i ve of f set f or a branch
instruction was not in range

There was no labe I w i t.h an
equate (.EQ) directiv€.
The
con t

opeod
ain a

e field does not
valid opcode or

directive,
The same labe I was de f i ned
more than once.

A symbol in the operand field
is not defined.
A eharacter in the label f ield
i s not a legal character for a
labe I .

This one is a eatch-alI for
syntacticatr errors in the
operand express i on, as wel I as
for use of a particular

B-1

.\ *** BAD ADDRESS ERROR

add r es s mode h, i th an opcode
that does not support that
mode.

A local label is more than 255
bytes from i ts normal label .

*** No NoRMAL TABEL ERRoR A loca I labe I i s used wi th no
normal- Iabel present

*** NESTED .IN ERRoR There is a . IN directive within
an included fi Ie.

*** MISSING .Do ERRoR There is a "FIN or .ELSE
without a corresponding .DO

*** .Do NEST Too DEEP ERRoR . DO .FIN blocks are nested
more than eight levels deep.

*** KEY TOO LONG The search string in a command
is longer than 38 characters.

*** REPTACE Too LoNG ERRoR The REPLACE command tried to
create a line longer than 24
characters.

* * * No I'IAC Ro NA},18 ERRoR The .MA directive has no name in
the operand fieLd.
The macro narne has not been
def i ned .

*** BAD t{ACRo PARAMETER ERRoR The character following a square
bracket (]) must be a number(I-9) or a (t).

When an error is discovered during assembly, the error
message is printed along with the offending tine. The
assembler then continues its pass, looking for more errors.At the end of the pass it prints "XXXX ERRORS IN ASSEMBLy",
where XXXX is the number of errors it found in that pass.
If there are any errors discovered during pass oner dssemblydoes not continue into pass two. Some errors are
catastrophic, and abort, assembly without continuing to the
end of the pass,

8

R-2

*** UNDEFINED I.{ACRo ERRoR

Append i x C

Quick Check of the Q-6S Board "

This appendix gives ysu a qui ck check procedure fer the g-6S
board " The steps outlir:eC below are exactly lhi:se used atthe factory to Ferfoxm a quick go,1nc gc ci:eck cf e*6S baarCs
pr ior to burn- in,
If you donnt get, the expect-eti results, refer to ehapter 5r
"Self Test'r f cr c*mprehensive test inf crmati.on "

Remove ttre jumr6:er plug at. positir:r"r 3 *f TBl ir-ipper rightcorner r:f t-he boardJ" Ttlelre shoq:Ld be a sirrgie jumprer
plug at position 2.

I

2

3

Turn on the Apple ff- If you're really in &
hi t EESET h'ef cr* the di sk bo*ts " 1t C*esn * twhether Lhe di sk haats or nat. &11),'oil needget to the BASIC prompt *ul""

From the ir i rI pr*rnlit, type CALL *15i (EL:TURbi)
takes you Lc Lli*: npple l{amitr-rr, signifie* b1.,"
prornpt.

hurry,
r*atter
to do is

T'hl i" s
Li"r* !!* il

4 Now you need tc kncw into whictr slat ttre e-6S i:oard isplugged. Wetl,l assume slot #4, and show the values toLype in parentireses. If yau harne it in a different
slot, use the f e:l- lowing tai:1e "

Slot Base Arldress (BA)

5

6

c-1

1 $cfigfi2 $cgAg3 $cgBg4 $cscff5 $c gns
6 $cocs7 $cgro

Type BA+l- (C0L=1)" The red light on the e-GB troardshould turn on; ttre green one shouLd start blinking.
Type BA+3 (CgC3) . The red I ight should stay on ; thegreen one should turn off i and the App1e screen shouldcycIe, accompanie<tr kry a ticking sound frorn the Apple
speaker.

In the lower r ight cotrner of the Apple screen r You should
see a four digit hexadecimal number. This is the checksum
of the onboard EPROM. The checksum is calculated by doing a
I5-bit addition of alI B-bit bytes in the EPROI,\, and
ignor ing over f lovr. This checksum number should match the
number printed on the EPROl,l label. If it doesnrt, youtve
probably got a bad EPROT'I.

7 . Whi Ie the screen is cycl ing r PIug the shorting plug you
removed from TBI position 3 into position 1. This
places plugs at positions t and 2. The screen cycling
should stop, and the green light should resume
bIinkiog.

Step 7 forces a Bus Errorr and thus checks operation of the
watchdog timer on the Q-68 board.

8. Reinstall the jumper plug at position 3 of TB1. There
should now be two p1ugs, at positions 2 and 3. Position
1 should not have a jumper p1ug. You can change these
plugs wi th the power st i I I oo r i f you possess the manual
dexterit
tempor a r
jumpers"

. Otherwis€r turn off the APPIe and
ly remove the Q-68 board to reinstall thev

1

r-)

Append i x D

S tar t i ng Up QPAK-6 B

When you boot the QPAK-68 system disk, a number of things
happen.

First, the file "HELLOt' is automaticalty loaded and run
This program is a one-line "EXEC" program:

Lg PRINT CHR$ (4) ; "EXEC X"

An "EXEC" file is run exactly as if you had typed the
eommands eontained in the fi le at the Apple I I keyboard.
Now the BASIC program trlrr is run ("EXEC t ed", in App1ejargon) . This program does two things 3

(r) POKE LgA ,96: POKE 103 , 1: POKE 2457 6 , g

This moves the start of BASIC program text storage from $8gg
to $6ggg. This is done so that you ean use the Q-68 board
and BAS IC together . I f the BAS IC program storage were left
at 98Ag , it would wipe out the Q-58 board startup veetors.
(2',| RUN QPAK. STARTUP

The Applesoft program, QPAK.STARTUP is now loaded and run.
This program puts up the f ive item menu sereen which al lovrs
you to reconfigure the system for a different Q-68 board
slot, start DEBUG, start the l,Iacro Assembler, or exit to
BASIC.

The first thing QPAK. STARTUP does is to load the binary
fiLe, "Q-68. STARTUP.BIN" at address $300-$3CF. This program
must be in memory for the Q-68 board to funetion correctly
with the Macro Assembler or with BASIC.

Ful1 listings of QPAK.STARTUP and Q-68. STARTUP.BIN are
included at the end of this Appendix"

Q-58. STARTUP.BIN does the f ollovring chores:
It establishes four fixed Apple II entry points for Q-58
board control:

I

D-1

2

3

$3gg----Starts the Q-68 board (running the DEBUG
program) and then enters a 6592 program loop which
checks for CTL-D (dump the Apple II text screen) ,and CTL-B (Break SBggA program execution). This
routine is jumped to when you type "DBUG'| from the
I,,lacro Assembler.
$393----Remote Operation. Call this address from a
BASIC program (Cef,f, 77L) to fire up DEBUG in the
Remote mode. After setting up for remote
operation, the routine returns to the caller
(usually a BASIC program). No checking is thus
done for CTL-B or CTL-D.

$30e -Start the Q-68 board and exit. The Apple
I I program that did the JSR $30e continues to run,
simultaneously with the Q-68 board. This routine
i s cal led when you type "QON " f rom the t'lacro
Assembler.

$3Cz----Turn off the Q-68 board. It is sometimes
useful to reset the Q-68 board from a BASIC
proEram. For example, the Q-58 board must be off to
do a disk access.

It contains the 65A2 code to dump the text screen to a
printer.
I t contains the 65g2 code to check the Apple I I keyboard
for a CTL-B, and upon finding it, initiating a 6\ggg
program ttBreak tt .

Three instructions in the Q-68. STARTUP.BIN program control
the Q-68 board . These instructions wi I 1 be coded
di fferently depending on which slot the Q-58 board
occup i es .

$3gn BIT $C0CI lTurn card on
$3Sa BIT $C0C3 ; Inberrupt the card
$3cz Brr $cgc0 lTurn card off
These instructions are initially set for slot *4 operation.
I f you put the Q-68 board into another slot, the three
instructions must be modi fied to account for the di fferent
slot" This is done for you when you choose ltem I (|'SET
Q-68 B0ARD SLOT") of the boot menu. The three locations are
changed to re f lec t the chosen s i.o t , and then
Q-68.STARTUP.Blttr is saved back to disk so that you won't
have to reconfigure aEain.

D*2

HOW CTL-D WORKS

When you type CTI-D from the DEBUG program, the 6BgAg doesone thio9. I t places an asterisk (*) in the lower rightcorner of the text screen, This is a signal to the 65g2
Q-68. STARTUP,BIN program to print the screen.
The 6592 now takes over. The screen printing is done in twosteps. First, the text screen is copied to $0Cgg-$0f,FF.Seeond, it is sent one character at a time to the DOSpr inter vector Iocation ($9nno1 .
This DOS vector is set up by the Apple II when youini tial i ze your pr inter card. you ao thi s from BASIC orfrom the Macro Assembler by typing'npR#N" (U is the slotnumber of your pr i nter card) .
Why copy the screen to ano ther RAM area f i r s t ?

Because your pr inter card might be set up to "echo" thepr intout to the text screen , Thi s has the unfor tunateeffeet of scrolling the screen whenever a carriage return is
eneountered . Trying to pr int a sereen as i t scrol ls out ofexistence produces garbage on the printer.
So whether or not your printer card echoes to the screen,the data sent to the printer is accurate, since the memoryarea $0c gg-$0r'nr never scrol ls.
You | 11 know if your eard is set for "video echo". As theprinter pr ints r you' lI see a screen of inverse and flashinggarbage sloyly devour the DEBUG sereen you are pr i nt i o9 .When the printing is finished, simply cycle the DEBUG windowback to the one you want, and the g"ibage will disappear.

HOW CTL -B WORKS

V'Ihen CTL-B is read from the Apple II keyboard port (location
$cggr) , the 6gggg AUTOVECTOR 7 address ($B 7c-gA Zr,l is loadedwith $10gBC, the "break" entry point for DEBUG. The e-68board is then interrupted by doing a ',BIT C0x3"instruction. rrxrt is the slot number plus g.

NOTE: I f your 68gg8 program uses the Apple I I keyboard , andyou have started DEBUG by typing "DBUG', from the assembler,

D-3

remember that i t wi I 1 be "compet i ng " wi th the 6592 in
reading the keyboard strobe to look for the "CTL-B'' code.

REI"IOTE T-IODE

Anything you can do with DEBUG from the Apple II keyboard,
you can also do from a BASIC program.

When you act i vate the Remote mode (wi tfr a CALL 17 L f rom
BASIC, f or example) , DEBUG looks at location $ggf D (decimal
77L) for " keyboard" input, rather than the Apple I I
keyboard . DEBUG interprets bi t 7 as a strobe bi t . When bi t
7 is high, DEBUG reads the value at $fo and processes it
exactly as if it had been read frorn the keyboard. When
DEBUG is ready to accept another "key", it clears bi t 7 of
Iocat i on $FD.

When the Remote mode is first entered, a "dummy" value of
$n'r' should be wr i tten to $r'o. Then the 65g2 program should
wai t for bi t seven to be cleared (in other words, wai t for
the $r'n to change to $7f) before sending "keystroke" data to
DEBUG. Thi s sLar tup protocol insures that DEBUG has
f ini shed al I star tup housekeeplng before accepting remote
input.
To get a f eel f or the povrer of thi s mode, boot the system t
and choose i tem 5, EXIT TO BAS IC. Then , type RUN REI'IDEMO "

Sit back and watch.
What a great way to teach 6|ggg operationt Here are some
hints you can use in your own BASIC programs:

I" Start up the board with a CALL 77L statement.
2 You send a character to DEBUG by doing a POKE (253rva1)

where "val" is the keyboard code P[,US l-28 . The high bi t
must be set for DEBUG to recognize that a new character
is being sent"
Use CHR$ (I5g\ (Ctf,-V) to swi tch f rour thre DEBUG screen
to the BASIC text screen" Do this before you put up
messaEes us i ng PRI NT sta tements .

Use CHR$ (f34) (CTL-F) to go back Lo the DEBilG screen r or
send three more CTL*V commands tu cycle ta HIRES screen
*1, HIRES screen *2, then back to DEBUG screen.

3

4

D-4

5 DEBUG indicates that it is ready for another characterby clearing bit 7 of address 253 (decimal)
"

The fol lowing BAS IC subroutine sends one eharaeter to DEBUG,and then wai ts for it to be accepted before proceeding:
POKE 253 r\r
rF PEEK (253) > L27 THEN 2g
RETU RN

Here's another handy one. The eharacter str ing A$ (which
might have come in di rectly from the keyboard) i s sent to
DEBUG:

lgV FoR L=l To LEN(A$)
LLA v=129+Asc (MrD$ (e$rLr l))
L2g GOSUB Lg
L3A NEXT
L4g RETURN

Line 110 sets bi t 7 of A$ high, as requi red by DEBUG.

Lg
2g
3A

D-5

Thi s 6592you boot
program is loaded into Apple memory (at $399,)the system di sk.

Q-68. STARTUP PAGE gggL

when

9EBD-
ggzq-
g7E7-
cg6g-
cglg-
gg3c-
gg3D -gg42-
gg43-

gs8 4-gg88-
ggSc-

g3gfi- 4C 0F g3

g3g3- Zfi 2C U3
6396- A9 88

LgLg
Lg2g
Lg3s
LA 4g
LgSg
Lg6s
Ls1 g
LgBg
Lgg g
LLgg
11 1g
LLzg
113s
LL4g
1r50
116 s
LL7 g
118g
LLg g
Lzgg
LzLg
L22g
L23g
L24g
L25g
L26g
L27 g
LzB g
L29 g
t33g
L3 4g
1359
L36fr
L37 s
13Bg
I39g
L4sg
L[Lg
L 429
L 439
I44g
1450

* (vgl I*__
HOOK . EQ $9NEO DOS PRINTER HOOK
INVBLK . EQ 929 INVERSE BLANK
LOWRT . EQ $7gI LO RIGHT CORNER
KBDATA . EQ $Cggg
KBSTB . EQ $CgLg* MEMORY MOVE POINTERS
sRcL .EQ $3C (t'tOtt:AlL)
SRCH . EQ $3O (UON : A IH)DSTI . EQ $EZ (MON: A4L)DSTH .EQ $43 (UOlt:A4H)* DEBUG START ADDRESSES
MGOAD . EQ $9984 ; DBUG ENTRY
RGOAD . EQ i,tGOAD+4 ; REI'{OTE
CTBAD . EQ l,tGOAD +8 ; CTL -B ENTRY

FOUR ENTRY POINTS:

$39 r---DBUG COMMAND
$:93---START DEBUG-REMOTE MODE
$3gB---QOl,l (START BD AND LEAVE)
$3c Z---TURN BoARD oFE

THE LOCATIONS TURNON*I, INTR+I
AND STOP+I ARE SET FOR
SLOT *4 OPERATION. TO SET A
A DIFFERENT SLOT, THE USER
SELECTS ITEI'{ (}) FROI"I THE
SYSTEM STARTUP T.,TENU . TH I S
CHANGES THE BYTES IN THEIIBtrTIT INSTRUCTIoNS To REFTECT
THE PROPER SIOT. THEN THIS
PROGRAM (0-68.STARTUP.BIN) IS
SAVED BACK ON DISK

' oR g3fig
'* __
BEG JMP MGO

JSR INSTAL ; PUT IN MGO VEC
LDA *RGOAD ; ALTER ONE BYTE

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

RGO

D*6

6398- 8D 67 gB

Cl Cqg3aB- 2Cg3av- 6g

g30E- 2g 2C 03g3L2- 2g AB A3

9315-
9318-
031A-
g3LC_
0 31r-
9322-
9324 -
9326-
9329 -

AD F7
C9 AA
D0 03
2g 58
AD gA
C9 82
Dg EF
2g 4g
4C 15

L46s
t47 fi
1480
L496
LsAg
1s 10
L52g
1530
L54s
1s50
1s60
Ls7 s
rsSg
Lsgq
L6sq
1510
L62s
L63g
L6 4g
1550
L66 g
L67 g

STA $897 ;TURN ON &EXIT*
TURN0N BIT $CgCl ;QoN ENTRY PT

RTS*--
MGO JSR INSTAT ; RESET VEC t S

JSR TURNON
*
*__
* MAIN CONTROL IOOP* LOOK FOR ASTERI SK IN BOTTOI.{* RIGHT CORNER OF SCREEN* AND FOR CTt-B FROM KEYBOARD*-- ---LOOP tDA $7r'Z

cl,tP f$aa
BNE .l ;NO rt*rr YET
JSR PRTSCR

.1 LDA KBDATA
Cl,lP *$82 ;CTL-B?
BNE LOCP ; NOPE
JSR INTER
JMP LOOP

INSTALL STARTUP VECTORS
ssP AT $rg8ggPC AT $ r g gXX (XX FRO[.,1 *['{GOAD)

INSTAL LDY *7
.1 LDA RVEC, Y

sTA $gga rY
DEY
BPt .1
RTS*

RVEC DA *$gg SSP z 0A gL 88 gg
DA *$01
DA *$88
DA *$09*

.DA *$09 PC: gq 0L l,tcOAD

.DA *$01
' DA

'/UCOaO. DA *tqcoeo*
* NOTE--INTER AND PRTSCR ARE* WRITTEN AS SUBROUTINES SO THAT* THEY I-,TAY BE CAttED TROM BAS IC* IN THE REI.{OTE },IODE
*

g7

03
CA

g32c-
g32E-
9331-
9334-g33s-
q337 -

Ag g7
89 38
99 Ag
B8
Lg F7
6g

g3
a3 1680

L69g
L7 sg
L1 LA
L7 2A
L7 3s
L7 4Ag3 L7 5sg8 L7 6s
L77 s
L7 8A
L7 9g
LBgA
18 10
L826
1830
L8 4s
1850
1860
L87 A
IBSO
1890
L9gs
191s
L92g
L93g
L9 4g
L95s

*
*
*
*
*

0338- sg
9339- 0L
033A- 86
a33B- frg

g33c- qg
g33D- gL
g33E- sgg33F- e4

D-7

g34g- 2C
9343- A2
9345- 8E
9348- A2
934A. BEg34D- BEg35g- E8g35I- 8E

Lg
BC
1t
gg
7C
7E

7D

Cg

g8

g8
gB

08

L96A *
L97g *
t9Bg *
L99g *
2ggg *
2gLA *
2g2g *
2g3A INTER BIT KBSTB ;CLEAR KB STB
2g4g tDX *CTBAD2A5g srx $87r2g6A LDX tg
291 g srx 98 7c2g8s srx $8782g9g INX I X=I NOWzLgg srx $87D
zLLg *--
2L2A * INTERRUPT THE Q-59 BOARD
2L3g * -- -4-

CTL-B WAS HIT. INSTALL AUTOVEC*7 AND INTERRUPT THE Q-68 BD

87C B7D 87E B7Fgs gL gg NN (FROM CTBAD)

BIT $COC3 <ALTERABLE INSTR
RTS

PRINT THE SCREEN. FIRST,
MOVE SCREEN FROI'I $gngg-$g7FF

TO $ gC gg- $ onrn'*__
PRTSCR LDY *g

STY S RCL
STY DSTL
LDx *$s4
STX SRCH
LDA #$gC
STA DSTH*__

* BY A FORTUITOUS COINCIDENCE,* X=4 AND Y=0, WHICH IS NEEDED* FOR THE NEXT CODE SECTION*__
l,lovE LDA (SRCL) , Y

STA (DSTL},Y
INY
tsNE MOVE
INC SRCH
I NC DS T}i
DEX
BNE },IOVE*_-

* PR I NT SCREEN
* _-
* CALC. SRCI-H F'OR NEXT tI NE*__

9354- 2C C3 Cg
9357 - 6s

03s8-
g35A-
g35c-
g35E-
936fl-
s362-
9354-

Ag gg
3C
42
g4

85 3D
A9 gC
8s 43

2L4g
2L5A
2L6g
2L7 s
2L8s
2L9g
22gg
22Lg
2229
223s
22 4g
2259
226fr
227 s
22Bg
2299
23gg
23Lg
2329
233s
23 4g
23sfr
2369
237 g
238fr
239fr
24fr9
2 [Lg
2 429
2439
2440
2 459

*
*
*
*

84
B4
A2

s366 -
0368-
g36A-
g368-
g36D -036r-
s37 L-
937 2-

81 3C
91 42
C8
Dg F9
E6 3D
E6 43
CA
Dg F'2

D*8

s37 4-
937 5-
s377-
q37 B-
937 A-
937 c-
637 E-
g37E -
0381-
0383-
0385-
9387 -
0388-
a3B9 -g3BB-

BA
Ag gg
4A
29 A3
a9 gc
B5 3D
8A
29 18
9g a2
69 7F
85 3c
gA
gA
a5 3C
85 3c

2469 NULINE TXA
247 g tDY ltg ; CHAR. COUNTER
248A LS R
2499 AND #$03
25gg oRA *$ gC
25Lg STA SRCH
2529 TXA
253s AND {+ $ 18
2549 BCC .1
255A ADC *$Zr
2569 .1 STA SRCL
257 g ASL
2589 ASL
2599 , ORA SRCL
26gg STA SRCL
26LA *--

O3BD- 81 3C

038F-
g39L-
a393-
s395-
a397 -
s399 -
a39A-
039c-
639E.-
a3Ag-
03A3-
03A4-
03A5-

26
gB
7T
2g
g7

4g
a2
2A
BD 9E

262s
2fiA
26 4s
2659
2669
267 A
268A
2699
27 gg
27 Lg
27 2A
27 3g
27 4g
27 5g
27 6g
2779
27 8g
27 9g
28AA
28Lg
2824
283g
28 4A
2859
2869
287 g
28Bg
2899
2990
29Lg
2929
293A
29 4g
2959

AST
PRI NT

CI,l P
BEQ
AND
CII{ P
BPL
CLC
ADC
BCC
LDA
JSR
INY
CPY
BNE

GET NEXT CHARACTER IN IINE
NtrNE tDA (SRCL) , Y

TRANSLATE SCREEN CODE TO ASCI I
g-LF-- -- 4A -582A- --2A (rNV BLK TO *)
2L- 7F-- -2L-7r.
8O-TF---MASKED TO A.1E AFTER

INVERSE BLANK CHECK

C9
Eg
29
C9
LA
I8
59
9g
A9
2g
C8
CA
Dg

* r Nver,x
AST
$7r$2s A-zs
PRINT A)=24

A<24
#$4s
PRINT
t
HOOK

*4s
INLINE

O3AB- A9g3AA- 2A
O3AD- E8
O3AE- Egg3Bg- Dg

28
E5

gD
BD 9E

18
C2

*
*
*

END OF THE LINE

LDA *13 ;CR
JSR HOOK

NEXT INX ;BU},lP LINE COUNTER
cPx *24
BNE NULINE*__

D-9

*
*
*
*
*
*
*

2969
297 sg3B2- A9 2g 2989

0384- 8D F7 g7 2999
3ggg
3gLg
3g2gg3B7- A2 g9 3g3g

0389- A9 gD 3g4gg3BB- 2g BD 9E 3g5Ag3BE- CA 3g6g
03ar- Dg F8 3g7g

3s8g
3A9g
3Lgg

03c1- 6s 3110
3Lzg
313s
3L4g
315 g

g3c2- 2c cg cg 3L6gg3c5- 6g 3L7 q
3189ggc6- 3L9g

* FINISHED. NOW RE},TOVE *
* __

LDA f r NVBT,X
STA LOWRT*__

* AND PRINT THE CARRIAGE RETURNS*__
LDx *9

.4 LDA *13 ;CR
JSR HOOK
DEX
BNE .4*__

* AND RES UT'18 WA I T I NG

RTS*
*__
* TURN OFF THE Q-69 BOARD

STO P BIT $cgcg ;SLOT *4
RTS

LEN . EQ *-BEG
*
Z

D-10

GOSUB
L8s
229
239
28s
3Ls
340
3sg
380
4gs
4Ls
429
439\- eLoAD
432
44A
(34);
459

fhis BAS IC program i s loaded and run when you start up the
QPAK-58 system.

5g REM --QPACK.STARTUP
100 D$ = cHn$ (4)
110 pntnr o$i'rBLoAD e-68.STARTUp .BINrl
L20 v = (PEEK (780) - L29') / LGL4g TEXT : HOME : GOSUB 45016g HTAB 5: PRINT " QPAK.58 STARTUP PROGRAM"Llg GosuB 460: HTAB 5: PRINT ilQ-68 BOARD SHOUTD BE IN SLOT + "iV:

PRINT
PRrNT : pRrNT "l. . . . SET Q-68 BOARD SLOT"
PRINT : PRINT "2.. , . START Q-68 DEBUG"
PRINT : pRINT "3..."RUN ASSEM. AT fiqTfr (N0 LANG.CARD)
PRrNT : pRrNT "4..".RUN ASSEM. AT $nugg (L.C. OR IrE)
PRINT : PRINT ''5..."EXIT TO BASIC'N
VTAB 262 }trTAB 1: PftINT ''YOUR CHOICE?N'"'"i
PRINT A: IF A = I THEN 629
IFA=2 THEN CALL768
IE A = 3 THEN PRINT D$;''BRUN ASI*,T.I{BII
IF A = 4 THEN VTAB 242 POKE 34,232 PRINT CHR$ (4);,'EXEC

END
THEN PRINT D$,,'BRUN ASM.MB " 49fi9,'

FOR ANOTHER CHANCE, TYPE "; CHR$ (34) ; "RUN"; CHR$

END
46A FOR J = A TO 39: PRINT rr-rr;:NEXT
47 fr RETURN
629 ONERR GOTO 8 IO
630 TEXT : HOME : PRINT "QPAK-68 CONFIGURE PROGRAM'|: PRINT l|

64A PRINT : PRINT
659 pRrNT "Q-68 CARD rN WHrCH SLOT?. . . " i654 HTAB 282 VTAB 5

679 PRINT A
689 PRINT: PRINT: PRINT ''UPDATING FILE
--Q58. STARTUP.BTN-- tt

TggV=A*16+L29
1Lg POKE 78fi,Y.. POKE g53rv + 2
7L2 POKE 963,V 1
739 pRINT CHR$ (4) ; "BSAVE Q-68. STARTUp.BTN TA$399, L$CF"
7 6g GOTO LTA
B 1g INVERSE
829 PRINT: PRINT: PRINT ''THIS DISKETTE DOES NOT CON AIN
THE FItE --0-58.STARTUP.BTN--|l

46s

tt:

6
tt(

. LCASI1
IF A =
PRINT
r) ''

D -11

839 NOR!,IAL
B4g PRINT CHR$ (7): PRINT CHR9(7)
859 PRINT "PLEASE REPLACE THE DISKETTE WITHII
869 pRrNT "oNE THAT DOES, AND TRy AGArN',l
879 PRINT : pRrNT "(HIT ANy KEy TO RESUME...)"3 GET Z$z
coTo 629

D*t2

Appendix E Things That Cou1d Go Wrong

In a systern as ecmplex as the QPAK-68/Apple I I combination,
there are a few things that could go wrong. This appendi x
collects as many as $re know about. As a registered epAK-68owner, you will receive mai lings that update this section(not too extensively, we hope) .

BASIC BEHAVES ERRATICALLY

You probably started BASIC the normal way, by booting an
Apple system disk. One of the purposes of the QPAK-68 disk
boot is to move the BASIC text storage out of the 68AgB
exeepLion vector memory spaee starting at $08 frT.

If you wish to use BASIC with the Q-68 board (for example a
REMOTE mode program), be sure to boot the QPAK-68 system
disk, and seleet item 5 (gxit to BASIC).

THE DrSK DOESN'T WORK (T/A ERROR)

Your Q-68 board is running. Turn it off by pressing RESET.

App1e saved 75 cents by not ineluding a track A switch in
their disk drive. Normal disk drives send head motion
pulses to the dr ive unt i I the track A swi tch eloses r and
then the computer knows that the head i s at the " homett
position.
Since the Apple disk drive does not have this switch, the
onl
max

way to insure that the head is homed is to give it the
mum number of step pulses that would home the head from

v
t

the furthest-out posi tioo. This is the clatter you hear
when the disk boots or tries to recover from an error. It
is the head assembly rattl ing against the f'home" posi tioo.
I f the elatter is slower than usual , and then a di sk error
message appears, your Q-68 board is probably running. The
6592 in the Apple must be running at full speed to perform
suecessful disk aeeesses. This means that the Q-68 board

E-1

must be off .

The easiest way to make this mistake is to be in the middle
of a DEBUG session, and try to load a disk fi le.
Recovery is easy: RESET the Apple, taking you back to the
assembler (rr ' rr prompt) , and then use the di sk.

APPLE GOES COt.{PLETELY DEAD

Did you put something into Apple page g memory?
this by writing locations $gg9gg-$gg8FF in your
program. This will mess up the Apple for sure.

You can do
68gss

So wiIl writing Apple locations $3og-$3FF (68ggg $s0O-BFF).
The vital pointers which control such things as where the
Apple goes when you press RESET are in this area of memory.

NOTHING HAPPENS WHEN r TypE "QON" FROI'I THE ASSEMBLER

Your 68ggg program does not have the required vectors for
the 68ggg startup operation. You need to put two addresses
at Apple locations $Bgg-$897 which correspond to the initial
system stack pointer , and 68ggg start address,
respectively, For example:

OR
DA
DA

$8s s
$18 |ss
$Lsss

; 68 ggg location ggtgg
; SSP
;68 ggg program start

TYPING ''DBUG 'I FROI,T THE ASSET,IBLER DOES NOT WORK

The "Q-68. STARTUP.BINTT program is not in Apple memory at
$399.
Note : I f you type "DBUG rr , your 68ggg program does not need
the RESET vectors described above. The "Q-6S.STARTUP.BINrlprcgram installs the RESET vectors for you. These vectors
are set to start the Q-68 board running DEBUG.

E-2

(ff your program does install the vectors, they willoverride those iEsE;Iled by the startup program. your new
ones will be installed when your program is assembled,)
The easiest way to make sure the startup program is in
memory is to reboot the system (CTL-OpenApple-RESET on the
I Ie) . This automatically instal 1s the startup program.

I f you wi sh to load the star tup program wi thout los i ng
results in progress, f rom the assembler ('r . rr prompt) type
I,INTR. Then , from the Apple mon i tor (rr * rr prompt) type "BLOAD
Q-68. STARTUP.BINW, Make sure the Q-68 board is off for this
operation. You can insure thi s by hi tting RESET before
typi ng ''PINTRfr .

I CAN I T PAS S CHARACT ERS TO DEBUG I N TH E RET,IOTE },IODE

Remember to set the MSB of all data sent to DEBUG. Also, if
you are sending a bunch of characters in a quick sueeessioo ryou need to check the l,lSB of the send i ng loea t i on (App1e
$nn) for MSB low before sending eaeh character. This
insures that DEBUG wontt miss any eharacters.

THE DEBUG ''CTt-D'I COMMAND DOESNIT WORK

I s your pr inter card enabled? This is done by typing "PR#n"where rrnrr is the slot number which your pr inter eard
occup i es .

You can type this either from BASIC (if you have selecteditem 5 from the startup menu), or directly from the
edi tor / assembler rr ' rr prompt.
Is the Q-68.STARTUP.BIN program in memory? This program
scans the DEBUG screen looking for the signal to print the
screen (as aster isk in the lower right corner) , and then
does the aetual screen pr intiDg .

Again, you can install this program from the editor prompt(r'rr) by typing MNTR, then ITBLOAD Q-58.STARTUP.BIN'f .

The 6592 listing for this program is included in Appendix D.If you have some special printer interface card problem and
have an Apple (6502) ed i tor / assembler (we recommend the S -C

E-3

I

2

3

4

one), you can use this listing toyour obrn pr i nter dr i ver .
serve as a guide to write

CAUT I ONS

Here are some general cautions which ,,beta-si te"test) users brought to our attention:
(first

Be careful not to let your Glggg code clobber the memoryat $Bgg-$BFr, which is Apple memory $g-$7rr.
Donrt do App1e DOS commands while the e-69 is usingApple memory. The disk I/O is carefully timed by ineApple's 6592 processor. If the e-GB boird is slowingdown the 6592 during attempted disk reads, you will g"t
I /O errors. During disk wr i te operations, yo,, couldclobber data on the disk.
Never work on the board (as in Chapter 5) without fi rstturning of f po$rer to the Apple II.
Stay clear of Apple memory f rom $3gg-$3CF. This rnemorycontains the "e-58. STARTUp.BINfT program, which must beintact to allow correct operation of the eON and DBUGassembler commands, and the CTRL-D and CTRL-B DEBUG
command s .

fr*4

L.

(_

e

L

(*

C

Egtro6t trtTII *
HI :::l i

Chapter 7 HARDWARE TOPICS

Section 7.L EXCEPTIONS

Question: How many programmers does it take to change a
1 i ght bulb?

Answer: None. Itrs a hardware problem.
Have you ever been in the middle of a mieroprocessor project
where something didnft work, and the software and hardware
people just pointed at each other, each insisting that the
problem was caused by the other group?

This is very common. A microcomputer based system is a very
complex animal, and it is sometimes very difficult to
exclusively place the blame on either hardware or software.
Motorola has equipped the 69ggg with an elegant mechanislltr
called "exceptions", which stops program execution when
something abnormal happeosr and lets you poke around to find
out what went wrong.

You hardware types ean present irrefutable evidenee to the
software team that somebody tried to aecess a long word at
an odd address. And you software types can prove once and
for all that register A4 never exeeeded $nggWfi, and thus
the gl i tches in video mem6ffiere caused by hardware.
Catching programming errors is only one of the many things
the 68ggg exception system can do.
There are five types of exeeptions:

Exceptions caused by outside stimulation (RESET,
Interrupts)
Exceptions caused by bugs in the program (eaaress Errorr
Illegal Instruction, Divide by Zero, Privilege
Violation).
Exceptions caused by program instructions (TRAP, CHECKV,
cHK).

1

2

3

7-L

4 Exceptions caused by a system malfunction (Bus Errorr
Spur i ous I nter rupt) .

5 " Exceptions which allow system testing (TRACE) .

AI I except i oos r no matter what the caus€ r are handled the
same \iray by the 68ggg . t'Normal tt Process io9 r where the
program executes exactly as you wrote it, is suspend€d, and
a special three-step exception sequence is started.
F irst, the 68ggg state is saved r so that you can find out
exactly where in memory the exception happened. Or, in the
case of an interrupt, so that you can resume where you left
off after finishing the interrupt processiog.
Secood, the 6\ggg reads a 32-bit address out of a special
area of memory. This address is called an "exception
vector" (a vector is something which Points; in this case
the address points to a subroutine) .

Third, the 68ggg j umps to this address.

By processing the excePtion, the 68ggg diverts program
execution away from the running program, to a special
routine which you have written to handle the exception.
How does the 68ggg knour which exception occured, and
therefore which particular vector to use?

At the bottom of the 58ggg mernory map (at $ggggggl is a one
kilobyte table of excePtion vectors. Take a look at page 61
of the Motorola 68ggg User t s t'lanual. Here you | 11 see the
complete vector table. Rather thair duPl icating the
descr iptions found in the Motorola manudl , we | 11 concentrate
on the vectors actually used by the QPAK-68 system.

THE RESET VECTOR

The first two vectors are for handling 68ggg startup. When
a 68ggg system is powered uPr the RESET line is typically
held asserted for a brief time until the other circuits in
the system can power up and stabilize. Then RESET is
released.
The 69ggg
in memor
S tack Po

then au toma t i ca I I y fe tches the
. The first four constitute an
nter value. This 32-bit value

first eight bytes
initial System

is loaded into thevi

7-2

SSP. The next four bytes consti tute a program start
address. This 32-bit value is loaded into the Program
Counter (PC). The 190frg Lhen jumps to this initial PC
address.
The RESET vector is the only B-byte vector in the table.
All the others are 4-bytes, representing 32-bi.t addresses.
I t is up to the system des igner to make sure that val id
information exists at the first B bytes of 69ggg memory.
When you run the QPAK-58 system, the RESET vectors can be
set up two ways:

When you start the system with the QPAK-68 system disk,
the reset vectors are automatical ly set up to star t up
the DEBUG program in the Q-68 board EPROM. The first
eight bytes (which start at $800 in Apple I I memory)
are:

6fr frL 88 06 gg gL fiA 84

1

This places the System Stack Pointer
the top of Q-68 board RAM ($fg BgAl ,operation aL the beginning of DEBUG
The SS P for DEBUG i s set to $fg 6gg .
with your program's SSP at $14 6gg.

for your program at
and beg i ns 68ggB
($rgoB4). NorE:
It wonrt interfere

2 The assembler can plaee the ei ght bytes at $8gg (us i ng
two ".DA" statements) , and thus start itself with sSP
and PC values that you choose. Once you write these
numbers to $Bg0-$897 r you turn the Q-68 board on with
the assemblerts "QON* eommand. Take a look at the
"VIDEOTESTTT program on the system disk for an example of
a program which starts this way.

7-3

BUS ERROR

This vector is used by the Q-68 board to start exception
processing when the systern watchdog timer has "timed-out".
Technically speakiog r if 180 rnicroseconds elapses between
the 68gg8 sending out an address and receiving back a DTACK
signal, the BERR pin of the 6BggB is asserted and a Bus
Error exception is initiated.
DEBUG uses this feature to figure out whether the memory you
have selected for di splay is there or not. DEBUG installs a
vector at the Bus Error vector location which points to an
internal routine that prints asterisks for "non-memory" data
values.
I f a Bus Error or Address Error occurs in your program, the
68ggg puts the return address and status register on the
Supervisor Stack. These values are displayed as PC and SR
of the DEBUG Status Window after the error occurs.
Four addi tional words of status information are also pushed
onto the Supervisor Stack for a Bus or Address Error
exception. DEBUG copies these four words to RAM starting
at $18 gg2. S imply display memory at this location to see
these values after a bus or address erroE.

LEVEL 7 INTERRUPT AUTOVECTOR

An Autovector is one which does not need to supply a vector
number to the 68ggg using external hardware- The
interrupting priority is the autovector number. The Q-58
board uses autovector 7 to interrupt the 69ggg from the
Apple II. This is the highest Priority }evel, and is
"auivalent to the "Non-Maskable Interruptnt found in most
8-bi t systems.

TRAP 15

The Trap 15 vector is used by DEBUG to implement
breakpoints.

7-4

Section 7.2 68g68 INTERRUPTS

There are two types of inter rupts in 68tgg- type processors.
Both are initiated in the same manner--ext.ernal hardware
asserts control signals which reguest the processor to
suspend normal proeessing and j ump to a special interrupt
program.

Most B bi t proeessors contai n two inter rupt pins, whrich
implement two priority levels of interrupt. The Non
Maskable Interrupt (NI"lI) interrupts the CPU regardless of
what is happening. The maskable interrupt (usually caI led
IRQ for interrupt request) may or ma
depend i ng on whether or not the runn
the interrupt.

not interrupt the CPU,
ng program has enabled

v
1

The user rnay set interrupt pr ior i ties between the two
interrupt .types. The NMI will typically be connected to
something which absolutely MUST interrupt, such as ci rcui try
which detects a power f ai l-ure. The other interrupL may be
honored or not, depending on the requirements of the
program. For example, IRQ might be disabled for a
time-sensitive operation, such as a disk access.
The i|ggfi expands this two level scheme into seven interrupt
pr ior i ty levels. Rather than providing seven separate
interrupt pins, the interrupt leve1 requested is encoded
into three lines and input to the 6BgAg on three pins called
IPLA/, IPLL/, and IPtz/. IPL stands for Interrupt Priority
Level, and the slash means that the signals are active Iow.

As the 68ggg is operating, it maintains an internal priority
leve 1 in three bi ts of i ts t6 bi t sta tus reg i s ter . By
setting its interrupt pr ior i ty leveI to di fferent values,
the 6BAgg can aI low some interrupts and ignore the others.
This is a great improvement over the two level B-bit CPU's.

Herets how it works" If the level of the incoming interrupt
is greater than the interrupt level set by the CPU r oE if it
i s a level 7 interrupt, the interrupt is recogni zed and the
interrupt processing begins. If not, the interrupt is
ignored. For example, i f the CPU is running at interrupt
level 2 (g|t) in the status register, and a level two
interrupt arrives (IPt2zTPLl: IPLA=TLA) t it is ignored, and
normal process ing continues.
When an interrupt is accepted, the 68ggg must figure out how

7-5

to get to the special program for interrupt processing.
Let I s say you have wr i tten thi s interrupt routine at address
AAAA. When the program is interrupted, it is at address
PPPP. tlow do !r,e get f rom PPPP to AAAA, and back to PPPP
when the interrupt routine is finished?
There are two vrays. The most general way is f or the 68g0g
to execute a special bus cycle cal led Interrupt
Acknowledg€. In this cycle, external interrupt hardware
puts an eight-bit vector number on the bus, and this number,
from g to 255 is brought into the 68g0g.

VECTO RS

A vector is something which points. In thi s case, the
number brought in points to one of 256 locations in the
bottom of the 68ggg memory space. At these locations are
four byte (32-bit) pointers which the user (that I s you) has
put there ahead of time. S ince four bytes are reguired to
define each of the 256 vector locations, there are a total
of Lg24 bytes in the vector area. Page 51 of the Motorola
68ggg User I s tlanual shows the enti re vector table.
Some of these vectors are reached by internal meafis " You
already know about the RESET vectors at locati ons g-7 .
Although the whole IK area can be vectored to by the
external interrupt hard$rare, the last half of it is
completely clear for externally generated interrupt vectors.
Locations in the first half either already have preassigned
funct i ons such as res€t r traps, and error s ; or they have the
mysterious ttreserved by Motorolatt designation.
What if you donrt want to go to the complexity and expense
of adding the hardware regui red to jam in the interrupt
vector pointer? If you can do with 7 or fewer vector
pointersr you can use the autovector mechanism provided by
the 68ggg.

AUTOVECTORS

An autovector is one which is selected by internal, rather
than external hardware. When the autovector mode is
activated, the vector number is simply the interrupt
priori.ty level numl:er--those three bits you activated on the

7-5

IPL pins to cause the interrupt in the first place. For
example interrupt priority 5 seleets autovector #5, whrich
happens to be located at memory locations $7 4 through $77 .

How do you teII the 68ggT that you want the autovector
mode? The system designer does this by forcing the VpA linelow dur ing the interrupt. VpA stands for Valid peripheral
Address. Foreing the autovector mode is actual ly a
secondary role for the VPA pin. The pr imary role is to
cause the 68ggg to alter its timing so that it is compatible
with existing 68Ag peripheral chips (the 68ggg designers atI',lotorola are no dummies !) . A result of this dual mode is
that the autovector mechanism is wrenched into the 68A0 bus
timing, and is therefore slower than the "notrma1 " vectored
interrupt mechanism.

How much slower? Not much. It turns out that the 689fi8
will wait anywhere between six and 14 extra clock periods to
synchronLze itseIf to the 68A0-type "E-clock", which makes
i t 6E6g bus compatible, This adds from fi.84 to 1.96
microseconds to the interrupt eycle (7. 16 Hegahertz clock) .

EITTING 64 PINS INTO 48

The 6BggB implements a reduced version of the 68699
interrupt system. I t functions exactly as in the 686A6 ,with one important limitation. Due to the necessity to
reduce the package si ze from 64 pins (68ggg\ to 48 pins
(6BggB), something had to 90.
One of the things done to conserve pins was to tie two of
the interrupt request pi ns together . The I PtO and I Pt2 pins
are tied together and designated IpLg-IpLz on the 6BggB.
This means that interrupt levels A, 2, 5 and 7 are
possible. t'Level g" really means t'no interrupts requested"
so there are three priority levels in the 6Bgg8--2, 5 and
7.

The Q-68 board uses autovector number 7 to allow the Apple
I I to interrupt normal 68ggB processing. This interrupt is
implemented in a manner that allows external hardware to
have free use of the interrupt system. This means that
future per ipheral boards for the Q-68 board can support any
kind of 6BAtB interrupts.

7-7

EXERC I S I NG THE 6Bggg INTERRU PT SYSTEI'{

Here is a program (INTER.DEt,tO.BEEP) r*hich demonstrates the
68gg8 inter rupt mechan i sm. We t 11 take the standard
VIDEOTEST program and add code to process an interrupt
generated by the Apple I I. Then r ds the VIDEOTEST program is
running r w€ | 11 interrupt it from the Apple and see what
happens.

Lines Lg4g through 1150 are the VIDEOTEST program descr ibed
in Chapter 2.

Lggg
LggL
Lfi2g
Lg2L
Lg3g
Lg 4A
Lg5g
Lg6g
Lg7 s
LsSg
Lsg g
LLgg
1119
LLzA
1139
t14s
II5g

*

*

START

LOOP

CtR
},1OVE
MOVE
MOVE
DBEQ
ADDQ
TST"B
TST.B
TST.B
BRA

.Tr 6ATINTER.DEMO"BEEP
*__
T r I,,lE . EQ $gLgg

OR $Lsss

Dg
*$2ggg,Afr
*$lgTg,DI
D0, (Ag) +
D1, LOOP
*1, DCI

$csss
$cssr
$c ss7
START

Now wer lI put the interrupt handling program at address
$119CI (Next page). This "handler" does just enough to let
you know it is there. I t makes a " zip" sound in the Apple t s
speaker.
This is done by setting up two delay loops. The value TII-18
is loaded into D4 to t,ime the duration of the sound event.
The inner loop PERIOD decrements D5 and waits for it to hit
zero (line I23 g) . Then D4 is decremented, and i f it hasn I t
hit zero yet, it is decremented and the loop runs again.
The ever decreasing value of D4 in the outer loop is loaded
into D5 at l-ine L22fi. This is r.rhat gives the sweep up in
f requency which produces the t'ziptt sound ef f ect.
The actual control of the Apple speaker i s done wi th I ine
LZL0. S imply accessing location $C930 in the Apple produces
a single "ticktt sound from the speaker. The TST"B
instruction reads this speaker location and sets 6BTAB

7-8

status flags according to what it finds there (we don't
care). When this litt1e routine finishes, line L25g does a
Return Erom Interrupt instruction to resume the interrupted
program.

1180
LL9g
1192
1194
1196
Lzgg
L2Lg
L22A
L236
L24g
L256
L266

L26fr
L21 s
LzBg
L29g
L3sg
13 l0
L32g

The startup vectors are set as usual. The program starts at
$1906, and we' 11 put the stack at $8066:

*__
* I NTERRU PT ROUT I NE
*__

.oR $1199*
l,tovE *rrMErD4

BEEP TST.B $CgIg
MOVE D4, D5

PERIOD DBF D5, PERIOD
DBF D4,BEEP
RTE

*__

*__
* sET UP START VECTORS (SSP&PC)*

.oR $Bg0

. DA $ggqgBgaa

. DA $ggggLggg*__

Now to instal I the interrupt vector . Autovector *7 goes to
6BggB location $7c-$7r'to pick up the interrupt routine
address. Since our interrupt program is at $11fi$, this is
the address we put there.
L32g * --
1339 * POINT AUTOVECTOR *7
L346 *1350 .OR $87CL36A .DA $1190

We real 1y haven I t changed the VIDEOTEST program function .
If you run the INTER programr you won't see any
d i f ference-- the screen cye les cont i nuous Iy.
But now try ttris. Whi le the above program is running, you
can use the S-C assembler (which is also running) to tr igger
a Q-68 inter rupt. S imply type $C 0C a, RETURN. This does a
read of Apple memory locat i on C 0C 3 wh i ch i s the Q-6 B

location which tr iggers the autovector 7 interrupt.

7-9

Do you real i ze what you j ust did?the Apple, to interrupt another,
You used one computer,

the Q-68 board I

7 -Lg

Section 7.3 DTACK, BERR and Watchdogs

WHAT IS DTACK, AND HOW DO I USE IT?

The 68906, like all computers, cannot operate all by
i tself. I t regui res memory to hold the programs and data
which it is to execute. The mechanism by which the 6Bgg6
accesses memory is referred to as "executing bus eycles".
A bus is a eolleetion of wires which have a common purpose
l,licroprocessor systems are generally organized into three
busses:

Address bus. 16 to 24 lines which carry information to
select one particular memory location out of many.

Data bus. The "width' (number of wires) of this bus
determi.nes the "-bi t" si ze of the microprocessor . 8
data bus lines conneet to an rrB-bitt' microprocessor; 16
data bus lines eonnect to a "16-bit" mieroprocessor.
Some microprocessor versions such as the 6BggA and the
Bg88 blur this definition by bringing out a l6-bit data
bus 8 bi ts at a time.

1

2

3 Control Bus, This is a
sueh as memory read and

hodgepodge of control signals
write, interrupt, wait, etc.

DTAC K

DTACK is a member of the control bus signals. I t stands for
Data Transfer ACKnowledg€. We | 11 look at a typical bus
cycle and see the vi tal role DTACK plays in the data
transfer.
Any 68Tgg bus cycle consists
clock is the one attached to
an 8 MHz clock, the time for
nanoseconds. Each time state
nano second s .

of eight cloek states. This
the CLK pin of the 6896fi. With
one cycle of the clock is L25

is half of this, 62.5

The 68ggg i s
that happens

ronous mach i ne ,it is eaused by
ng that everythi ng
edge or other of

a synch
inside

aanlme

7-rl

some

Lhe clock. I f you look at a 6\ggg spec sheet, you n Il seeall timing speci fications given as such a time lfter one ofthe clock edges (an edge is where the clock goes low to highor high to low) .
Letfs look at the 68ggg states one by one

A. STATE g. This state separates one bus cycle fromanother. Nothing is asserted during this state.
1. STATE l. The address bus goes active with the addressof the memory locat i on to be read or wr i tten . I n STATEg, the address bus was t'f loating" which means that $ras

nei ther high nor low. I t was simply disconnected fromthe system.
2. STATE 2" By now the address bus is ready with thedesired collection of highs and lows, and in 52 a signal

ca]. led Address Strobe (aS I goes low to indicate that thesignals on the address bus are stable and can be used bythe system.
I f the cycle is a READ operation (data transferred into the68ggg) the data strobe signal also goes low in S 2. I f it isa WRITE cycle (data coming out of the 6gggg) the R/W linegoes low along with AS in this cycle.
3. STATE 3. Nothing happens here for a READ cycle.

system circuitry is simply given some time to get
data ready for the 6BgAg.

The
the

For a WRITE cycle, the data out of the 68ggg is placed
on the data bus lines " The data bus vras unti 1 nowfloatiog.

Before we look at STATE 4, let's summarize where the 6Tggg
i s after the f i rst four states.
For a READ operation, the address has been sent out, thedata bus is set to the input mode to receive the outsidedata, and the data strobe signal has been activated to tel Ithe outs ide dev ice (s) to send data into the G|ggg .

For a WRITE operation the address has been sent out, the R/Wline has gone low to tell the system that a write operation
is coming, and the data out of the 6Tggg is sitting on thedata bus.

Now what?

7 -L2

The 6lfigg has done all it can to perform a successful datatransf er . I t is now up to the 'cutside system to completethe transaction.
In a READ cycle, the outside system (usually a memory) mustpresent the data to be read by the GBTAT on the data bus.In a WRITE cycle, the outside system must grab the data offthe data bus and store it.
How does the 68frqW know t.hat the outside system hassuccessfully completed its half of the data transfer? you
guessed i t, by looking at the Data Transfer Acknowledge(DTACK) signal.
I t is the respons ibi I i ty of the ouls ide ci rcui try to pul I
DTACK low after it is done with the data bus.
For a READ, DTACK is asserted when the outside cireuit hasplaced i ts data on the data bus . For a I,{RITE, the dev i eeasserts DTACK after it has stored the data from the data
bus.
4. STATE 4 " At the end cf S 4 the DTACK signal is checkedby the 68ggg. If it is low by the end of 54, the 689fi6proceeds to state 5 to finish the bus cycle. If it isnot low yet, the i\gTfi enters a waiting phase to givethe outside device more time to respond.
This is done by substituting WAIT states for states 5 and6. How many wait states? As many as are needed by the
outs ide device. Each wai t state takes one |Agfig clockperiod (125 nanoseconds at I MHz). As far as tbre system iseoncerned, a wait state behaves exactly like a STATE A cyclein that i f DTACK goes low hefore the state ends, the 6ggTgproceeds to sta te 5 .

ryor example i f three wai t states are inserted, the sequenceis SA, Sl, S2, S3, S4, Sw, Sw, Sw, S5, S6, S7 for a totat of14 cycles instead of the usual eight. Remember that each
wai t interval takes two state times.
This obviously slows down the 6BTAA, since a memory eycletakes LONGER wi th wai t states inserted,
Once DTACK is assert€d, the bus cycle is allowed to finish.
5. STATE 5. Another "do nothing', cycle to give the outsidedevices time to respond. None of the signals ehangeduring this state.

7-13

6 STATE 6. We I re almost done. Data to be read into the6|ggg must be ava i lable j ust before the end of S 5, and
held until about the end of 57. por a WRITE cycle,
nothing happens in 56.

7 STATE 7. Clean-up operations.
deactivated by going high, and
returns high. If the R/W line
operation, it is returned high
cycle.

Address Strobe is
f i kewi se Data S trobe
was low for a wr i te
during S0 of the next

7 -L4

HORE ABOUT DTACK, ALL ABOUT WATCHDOGS

What I s the di fference between DTACK and the WAIT line
provided by most I bit microprocessors? Although they both
aecompl i sh the sarne resul t of ex tend i ng CPU bus cyc les f or
slowIy responding outside components, the WAIT function
works j ust the opposi te as DTACK. The WAIT line is asserted
to extend the CPU time; the DTACK signal is asserted tr: NOT
e x tend the t ime .

This has some very subtle system impl ieations.
I f a WAIT type system tries to access nonexistent memoyy rthe CPU will read CIr write this "memory" without really
knowing that it is not there" For a read, it will bring in
garbage (probably the state of the floating data bus 1ir,es);
and for a write it will write into thin air.
I f a DTACK type system tr ies to access nonex i stent memo yy ,the CPU will wait forever for DTACK to be asserted, which of
course never happens since there is no memor
eireuitry there. I t is the responsibi lity o

The (aS) + says use the 32-bi t address in A5
destinatioo r and then add 4 to it to access
sequenLial long (32-bit) word.

vf
oT DTACK
the 68$6fr

system designer to make sure that an orderly recovery can be
made from this situation "

Who, you might ask, would be dumb enough to try to aecess
nonex istent memory? Believe it or not, I would and you
would. Not on purpose , of eourse, and probably not at
first, but as you really get proficient with the 68gA8,
your l1 find yourself writing instructions trike this:

MOVE.L $4S (A2rA3), (A5)+

Thi s elegant f i ttle program says to move data from one area
of memory to another. Where to find the data (the souree)
is the first expression before the commal where to put it
(the destination) is the seeond expression.
The $4S (A2rA3) says take the 32-bit address in A2, add it
to the l5-bit address in A3, and to that add the number
$4S. Thatrs the source a<ldress.

as the
the next

Of course r you have loaded A2, A3, and A5 previously, and of
eourse you have made absolutely sure that every possible
combination that these values might take on as your program

7-Ls

runs do not send you into non-existent memory land'

You haven I t?
The point is that with the fantastic (and complex)
add.L"sing modes provided by the |BgfrA, it is fairly easy,
especially as you are l-earnio9, to try to access memory
where it isnrt.
What prevents the 68ggg from hang i ng up i f th i s happens ?

There is a circuit on the Q-68 board called a watchdog timer
which monitors the time between sending out an address and
the arr ival of DTACK. I f no DTACK comes back after I80
microseconds, the timer triggers a 6|ggg mechanism called
BUs ERR0R. ini " i s accompl i shed by pul I i ng the 6BggA pi n
called BERR low.

7-16

BERR: ANOTHER WAY TO END A BUS CYCLE

When BERR is asserted, ttre 68000 ent,ers a special processing
mode called an exception. There are various kinds of
exceptions which we-'11 look at later. BERR is an externally
geneiated exception. in that external hardware (in this case
[he watctrdog timer) triggers the exception processing'

what BERR does is to terminate the current bus cycle (the
one which had to wait too long for DTACK), and jumps to a
routine which you wrote to trandte the error condition' The
step by step michanism for this operation is as follows:
I. The Program Counter and status Registers are pushed on

the stack.
2. Four more words which deal with the instruction which

was being executed when the BERR happened are pushed on
the stack.

3. Tt.e 58000 goes to locations $Aggg8-$gS00B and picks up a
32 bit addiess it fincls there. This address is loaded
into the Program counter.

The program now runs at the address you have stored at
Iocation $SgOg8-$SgggB.

tricky machine, no?

How do you ex i t from the Bus Error process ing? The normal
way to exit from an exception is to execute an RTB (Return
Erom Exception) instruction. This does two things. It pops
the stack once to load the status register, and twice again
to load the program counter.
This works fine for most exceptions (interrupts, traps and
other except,ions), hut donrt expect it to work with a Bus
Error. Why? Because of those other four words which were
pushed on the stack for the Bus Er ror except i on .

When your program has completed bus error exception
processing it will probably want to jump to an absolute
address. Before it does this you need to clean up the
stack. You do ttri s by poppinE 7 words of f of the stack.
The best way to do thi s is to add 14 to the stack pointer
register A7.

You might be wontlering why 1,4, and not 7 is added to the
stack pointer.
The total information saved for the Bus Error exeeption is
the program counter (32 bi t --4 bytes) , the status regi ster
(16 bit--2 bytes), the contents of the i\frgg instruction
register (16 bits--2 bytes) r the contents of the address bus(32 bi ts--4 bytes) , and a special status word which
i nd i cates the type of bus cyc le whi ch was execut i ng when the
error oecured (16 bits--2 brytes). You might want tc
consider this as 7 words, but the 68090 considers memory in
byte increments. Therefore to "bump" the stack pointer (A7)by 7 words, add 14 to A7"

7 -L7

7-r8

TRYING OUT THE BUS ERROR MECHANISM WITH THE Q-68 BOARD

Here is a little program (BERR.EX) which actually lets yousee the klus error meehanism in action.
You I 11 recogn ize ttre VIDEOTEST program f rom Chapter Z at thestart.
Lg5g
Lg6s
Lg7 g
LOBg
Lgg A
LLgg
I 110
LLzg
113s
LL4g
1159
LL6g
LL7 6
11Bg
1199
L2gg
L2Lg

MOVE

. oR $Lfi6A
CLR Dq

srART MOVE {+ $ 2 g0g , Afr
MOVE *$0gAgLg0g,DL

LOOP MOVE Dfr , (A0) +DBEQ Dl, LOOP
ADDQ *I,DO*

* FORCE A wATCHDOG TII.{EoUT*

*
BAC K

*

B
B
B

TST
TST
TST
BRA

$00 g3ggg0 n D3

$csss
$cosl
$cssz
START

VIDEOTEST uses the Apple I I HI RES screen as a gi ant pi I otl ight to tel 1 you that the 68ggg is crank i og . To VIDEOTEST
we' 11 add some code to del iberately cause a brrs error r and alittle more eode to handle it.
First, the error itself. Line lt5g tries to read the 16 bitcontents of loeation 93gggg, and put it into D3. But thereis no memory at $l00ag in the e-68 system. The label "BACK"has been added to the instruction fol lowing the bogusinstruction as a place to return to after the bus errorprocessing is done.
The VIDEOTEST program starts at 1ocation $fg gg. We' ll putthe bus error handl ing program at $ll frg . This smal I programoccupies listing lines L22A through L30A. All this piogramdoes is to delay a whi le, then j u*p back to the main prograrnloop ("Jt"lp BACK"). Lines L27A and L2gg do the deldy.

7 -L9

L22g
L23g *
L24g *
L25g *
L26g *
L27 s
L28g SPIN
L29g
L3gg

OR $rr00
ADD 7 WORDS TO STACK POINTER TO CLEAN
UP BERR CONDITION

MOVE * $n'rrr ,D4DBF D4, SPIN
ADDA *$OE,A7 ;ADD 14
JI.,IP BAC K

Line L29g cleans up the stack by adding 14 to the stackpointer. This puts the stack pointer back to where it wasbefore the bus error happened. Line L3gA takes us back intothe VIDEOTEST program Ioop.

1 3ls
L32s
1330
L3 4s
1350
L36s

BERR

.oR

.DA

.DA
VECTOR
.DA

*

*

$8ss
$sgss5sss
$asssLggs

$asssLLsa

We're not quite done. The l"ast step is to install thevector at location $AgggB to point to the program we j ustput at $If gg. tine L35g does this" The origin does not
need to be set to $S since it is there anyway due to theprevious t,wo . DA statements. The result of line L35g is toput the address $ggggllgg at locations $gg8-$BgB. (Remember
that this is actually 68gg8 addresses $gggg8-$ggggBl "

Now every tirne through the VIDEOTEST loop, the program
causes a bus error and detours through the routine at $fl AA,
which puts in a long deldy" Run the program and satisfy
yourself that this is what is happening.

7 -29

THERE ARE ACTUALLY THREE WAYS. . .

There are actually three ways to end a bus cycle. DTACK is
the norrnal way. BERR is there for when DTACK isn't (because
of a system problem)" The third way is with a signal ealled
VPA, Vts1 id Per ipheral Address.
The VPA signal is used for two purposes. The pr imary
purpose is to al low per ipheral chips which were des igned for
the MC6BgA (8-bit) microprocessor to function with the 16-
bit 6890A. The second purpose is to activate a special
interrupt mechanism called autoveetoring. The section on
interrupts deals with this second topie "

Take a look at page 6-3 of your 680g8 data book (the white
one) . F igure 6-2 shows a signal eal led E near the bottom of
the timing di agram. Thi s E signal is a 68g0 clock signal .
A1 1 transfers to and from 68gA per ipheral devices are
synchronized to this E cloek.
All 6890 per ipheral chips have an E clock input. To run
compatibly wi th the 680 Bfr , the 68fr9fr provides an E elock
output which simulates the one coming out of a 68gg system,
This clock runs all the time, and is derived internal to the
6\ggg by dividing the $Bggfr clock by ten. It is high for
six elocks, low for four, ad infinitum.
Address and data transfers to and from the 68$gg oceur at
preci sely defined states r synchroni zed to the input CLOCK.
The E clock, on the other hand, runs merrily a1on9, without
caring what the 686gA is up to. For example, if DTACK eomes
late in a 6\ggg cycle, the 6809A pauses for a bit, but the E
clock continues t,o run. What this means is that there is no
way to predict the phasing of the E clock with reference to
the 6|ggg system timing.
For thi s reason, whenever a 68gg type per ipheral is to be
accessed , the 68ggg must sl ip it' s sync unti l it "l i nes up"
with the E-cloek. In other words, it' s address and data
transf er s must be coord i nated wi th the timi ng (wi th respeel
to the E-clock) expected by the per i.pheral .

How does the 68ggg know when to do this?
This is the primary role of the VPA input pin. When this
Iine is asserted (pulled low) at the beginning of a 689fi0
bus cycle, the 689fi9 enters a speeial sequence which inserts
enough wa i t states to synchron ize wi th the E-clock. r igure
6-2 of the 6\ggg data book shows this,

1 -2L

By the way, figure 6-2 and the second to last paragraph onpage 6-1 contain a major inaccuracy" The 1ast sentence ofthis paragraph reads, "The processor no$, inserts wait statesuntil it recognizes the assertion of VpA'r.

Actually, this is backwards. It is the assertion of VpA
which tel ls the processor to insert wai t states tosynchronize the E clock. VPA is actually sampled at the endof S 4 (figure 6-2 shows it being asserted about an inch toofar to the right).
This synchronization effect brings up an interesting point.
It seems that depending on exactly where the E clock is withrespect to the 6$ggg timing , di f f erent amounts of time wi 1Ibe required to synchronize with the 68gLg bus cycle. This
happens to be exactly correct, as pages 8-6 and 8-7 of the
68ggg data manual i l lustrate. Here the i'best" and "worst"cases are shown, the best being the minimum number of wait
states required (12), and the worst being the maximum (28).

7 -22

(_

L

L

(*-_.

C

Chapter B

Seetion 8.1 DATA SIZES

The 6BAgq deals wi th data in three si zes--byte, wcrd and
long word. A byte is B bits of data. A word is two bytes
laid end to end. A long word is four bytes laid end to
end.

There are two irnpor tant f acts about $Bfigg memory
addressing.
Fact *1: ALL 68ggg MEMORY IS ADDRESSED IN BYTES

If you want to read or write a byter yGU can do so at any
address. No restr ictions r rlo problems.
Words are cons idered as two bytes " Ttrese two bytes are
stored in "high*1ow" order: The most significant half is
the 1ow (even) address, and the least signi f icant hai-f is
stored at the next (odd) address.

at

Long words are cons i"dered as f our b,ytes.

Fact *22 WORDS AND LONG WORDS MUST BE ACCESSED AT EVEN
ADDRES S ES

Letts suppose that the first four memory loeations contain
the following data:

aaaaaaaa
bbbbbbbb
CCCCCCCC
dddddddd

g
1
2
3

Eaeh location contains one byte of data.
instruet ion

The 68fi96

I,IOVE.B $0rOI
into the low I bits of Dl, and theputs aaaaaaaa

instruction
I"'IOVE.B $IrPl

puts bbbbbbbb into the low B bits of Dl.

8-l

Now suppose you want to load more than 8 bits at a time.(rnis is, af ter al l , one of the mai n reasons you upgra,Cedfrom an 8-bit processor) . Here are two attempts to dothis. Look at them, and and try to figure out which isilfegal:
#1
*2

MOVE.W
MOVE . W

$2, DL
$3rol

If you I re dealing with word-sLze data, the first four memorylocati.ons should be visualized like this:
aaaaaaaa:bbbbbbbb----Word Address g

cccccccc:dddddddd----Word Address I
Thus WORD g is stored as aaaaaaaabbbbbbbb and word Z isstored as ccccccccdddddddd . I f you try to read "word 3 " ,the 69ggg wonrt know what you are talking about.
Remember--words exist at even addresses onIy,
So *1 is ok, and *2 is illegal.
What happens if you actuafly write the program for try tZZYour assembler should f lag th i s as a ,tbad address tt er ror .But thatr s not the whole story on address errors. There arefar more subtle ways to generate bad addresses, some ofwhich are not detectible by any assemblert We' 11 look athow the 6lggg deals with these situations in the section onexceptions. For no$r, let I s j ust say that the GgAAg has away Lo alert you to address errors as your code is running.
Now for the th i rd case, Iong words "

Long words are simi lar to words, in that they are stacked,
I ike so:

aaaaaaaabbbbbbbbccccccccdddddddd- Long Word Address g

eeeeeeeefffft.tffgggggggghhhhhhhh -Long Word Address 4

To load the 32 bit word a-b-c-d into D3, you write
MOVE. L $9, D3

If you try to do this at any odd address, such as

lulovE"L $lrD3

8-2

your assembler r*i 11 f lag a bad address er ror .

What if you try this:
MOVE. L $2, n3

That's legdl , since location 2 is even. But it is not a
long word boundary. What wi I I load into D3 is :

ecccccccddddddddeeeeeeee f f f f f f f f
which is the low half of one
the other t Thi s is per fectl
concerned r so be careful to
eonsistent.

long word , and the high hal f of
legal as far as the 68009 is

eep your long word boundariesv
k

The Macro Assembler distinguishes data size
extensions "B for byte, .W for word, and .L
I f you spec i fy nothi ng , such as

by
fo

the
r long word.

I,IOVE (aZ), (A1)

the assembler assumes you meant MOVE.W and uses the 16 bit
form.

B-3

NU},IEROUS PRACTICAL EXAMPLES

Here are programming examples that demonstrate some of the
data size distinctions made by the Assembler and by the
68$AA z

ggggv 23 4 -
L2345578-

Lg32 * -- ---
LgLg NUI,14 . EQ $F 234
LA5g NUMS . EQ $12345 678
Lg6g * --

This code segment illustrates that data values are normally
represented as 32-bit quantities. In line Lg4g , even though
NUM4 is def i ned as the 15-bi t valu€ r 'rF 234 " , the assembler
represents it as the 32-bit valuer "ggggP234" (look at the
assembled code in the left column).

LABELS AS DATA VALUES

In 68qgg instructions, a label that represents a constant
must be preceded by a r*rr sign. This tells the assembler
that the value is data, and not a memory address. If you
are specifying a hexadecimal valu€r the number is preceeded
by tt*$tt.

The size of the data actually used by the 68ggg is
deterrnined by the instruction extension, tt.Btt, ".Wtt or
ll rllrLr .

B-4

ggggLgas- 3a7c 8234
sssslgg4- 327c 5678

sgsaLggS- 247C agva
sggglggc- t234
ssgsLwgv- 267C L234
$assLsLz- s678

sasgLsls- L23c gg78

LL7 g * ---
118 0 tlovE {t ltut'l4 , A g1190 MOVE #tlUt't8rAl
L26A *--
LzLg MOVE. L #UUt44 lA2
L220 MOVE.L *llUU8rA3
L23A *------
L25o l'lovE.B *NuMBrDl

L3Ag LEA NUM 4 ,A4

L26g *

Line 1180: Even though ilNUM4rr is the 32-bit guantity
"AgAgE234"I only the bottom 16-bits are used in the MOVEinstruction, since MOVE is the same as I'MOVE.WT', whichspecifies word size.
tine 1190: The 32-bit constant [NUM8* is truneated to the
low l6-bi ts for the same reason as in line 1189.

Line LZL0, Line L2262 Here the fulI 32-bit values are
loaded due to the ".L" extension on the MOVE instruction
Line L250t Here the 32-bit "L2345678" is truncated to
"A978 * beeause of the rr.3rr extension. Note that although
the eonstant is coded as ttgg78 ", only the "78 " loads into
DI.

WITH THE IItrg6II INSTRUCTION

For the
values.
inelude
tt long tt ,
though;

agasLglc- 49F9gggsLszs- 8234ggaglgzz- 4Br9
aqgqLs26- 5678

tttrg6tt instruction, leave of f the rr* 'r sign for data
The Assembler will give a BAD ADDRESS ERROR if you

it. Also note that the LEA instruction is always
as if a rr. trr were included. (Don I t include it
the LEA instruction does not allow an extension) .

ggaa

L23 4
13 10
L32g *

LEA NUMB,A5

B-5

LABELS AS ADDRESSES

In aIl of the above examples, the labels ',NUI,,14" and INUl,lgrl
represent data values.
Now let I s take a look at labe I s that spec i fy addresses .

To specify a memory address, leave off the ,*r sign.
I36g *--

ggggLfizg- 2839 ssgsgggfiLfrzc- r.234gUgglgzg- 3C39 L234
asssls3z- s67 B

L37 g MOVE.L NUI'{4rD7

1380 t,tovE NUl,lgrD6
L39g *--

Now "NUM4'| and "NUMB " represent addresses at which the 6Tgggfinds data values. Lines L37g and l38g are good examples ofthe kind of "size" nuances in the 6gggg that can trip up the
unbrary.

There are reatly two sizes specified by these 1ines.
The ADDRESS size is 3z-bits, as always" you can confirmthis by noticing that NUM4 and NUMB are represented by32-bit quantities in the opcode (Ieft) column.
The DATA si ze is determined by the instruction extens ion,
".Btt, rr.14rr or tt.Ltt. In line L379, the 32-bit guantity ataddress gggg?234 is loaded inLo D7 . In 1ine I3Bg, tha
1 6-bi t quant i ty at address L234567 I is loaded into DG.

Lines L37g and I38g illustrate the,'absolute address', modeof a,Cdress i ng . I f, you wi sh to f orce an address express i onto 16-bits, you can use the [<rr pref i x. This saves twobytes of opcode by truncating the 32-bit address to the low
I 6-bi ts .

ggggLg34- 2A38 5678
asgsLg3B- 3839 L234ggsglg 3c- 557 8

L44g *
L45g

L46g
14gg *

MOVE " L

MOVE

<NUf"18, D5

NUM8, D4

In line L459, the !r<rr pref ix has truncated
"5678". Be careful if you do thist The taddress will be sign-extended before it isaddress. In fact, ANy 15-bit address is s

ttNUMB rr to
runcated (f6-bit)
sent out as an

i gn ex tended

8-6

bef ore it is used. (Sec,tion 8.2 deals with sign
extension).
Don't be lulled into thinking that the address will be
32-bit because of the rr.trrt extension in line L459. As in
the previous examptre, the ". L" specifies the size of the
data moved into D4n not the address where the data is
f ound "

By the way, the Assembler also recogni zes a rt> rt pref i x which
forees the 32-bit form. This prefix is used to force 32-bit
branch di splacements.

LABELS IN '"DA'' DIRECTIVES

We t ve seen how the rr * '! s i gn means a data va lu€ r as opposed
to a memory address, in 68Tfi0 instruction code" In ".DA"
direetives, the rr#rr prefix means something else" It means
tt use the low B-bi ts rr .

Also, tt /tt means t'use the low 16-bits"
"use the entire 32-bits".

No prefix means

ggwgLg3E- 78gg6gLg3F- 34gugglg40* 5678
ssssLg42- L234 5678

1550 *
1569
L57 g
158g
L59g
L60g *

DA
DA
DA
DA

t'tuu g
#numa
/NuMs
NUM 8

A PARTING QUESTION

In program line lIBg, what address do you think is loaded
into Ag? The assembLed code says to load "Y234 ".
I f you said "ggggV234" t you | 1l want to read the next section
on sign extension, If you said "FFEFF234"t you'11 want to
read the next section to ver i fy how smart you are.

8-7

8-8

Section 8"2 SIGN EXTENSION

WHEN DOES 25 PLUS 651 53fr EQUAL 19?

The 68g6A's 32-bit address registers introduce some
compl i cat i ons not present in 8-bi t micros . These
compl icat i ons ar i se from the fact thaL the address reg i sters
can be loaded r*i th data of two si zes : word or long word .

I"lotorola could have made life "sirnple" by insisting that
address reg i ster s must always be loaded wi th 32-bi t data.
For example, the instruction:

LEA *1rA3

't gggfrgfrgL" 0 rrrh i ch occup i es 4 byteswould conta i n the operand
of data.
It would be nicer to represent t.he number rrlrr as "gg6L",
and save the two bytes of leading zeros- A two byte address
would accomodate address references from $gg0g-$rFFr.

The 68g0g designers realized this, and wisely provided a
mechanism which all-ows you to speci f y addresses as ei ther
16-bi t or 32-bi t data .

Now for a little quiz. What is the value of the following
number? (Hint: think of data in twors cornplement forrn, as
the 6Tggg does in i. ts address ca lcu1 at i ons) :

$gg 0 0FFFr

You t re not supposed to answer a question wiLh a questioo r
but in this .li" you have to. Before answering the qui z,
you must ask the fol lowing question :

Is this a 16-bit number or a 32-bit number?

I f you think it is a l6-bit number, your answer should be
tt 1tt

la

If you think it is a 32-bit number, your answer should be
tt55535tt.

Before proceeding, Iet's quickly review two I s complement
ar i thmetic.

B-9

SOME TWO I S COM PLE},TENT STUFF

The value rr-Irr is represented as3

$m
$rrrr'
$rrFn'nFFF

in 8-bit form
in 16-bi t form
in 32-bi t form

In two I s complement arithmetic, the most significant bit
the sign bit. If the MSB is rrlrr, the number is'negativei
it is 't0tt the number is positive.

1S
1t

To interpret a negative number in twors complement form,
first complement (flip) all the bits, and then add one.
tet I s convert the 8-bit $f E. . F irst $re note that the MSB isrrlrr r so the number is negative. Next we f l ip the bits toget gg. Then we add one, to get gJ.. The answer : -1.
Now letrs do the same for the 32-bit form. I.{SB is rrlrr'
number is negativ€. Flipping the bits gives gggggggg,
Adding I gives ggggtggL. Answer, -I, exactly as beforo.

68ggg ADDRESS ARITHMETIC

[,etrs play 68ggg for a minute. Werre the 5BTAA, executing
code that some programmer wrote.
We encounter the fol Iowing instruction

LEA -5 (AArp.l) rA4

This address mode says we are to add three valuesi -5, the
contents of AA, and the contents of A1. The rt-sr term is an
B-bit guantity; the (A0) term is a 32-bit guantity; and the
(AI) term is a 15-bit quantity. (It might come as a
surprise that (Al) is f6-bit--if the programmer hranted it to
represent a 32-bi t number he or she would have added a rr . Ltr
extensionl i.e. 'rAl.Lrf). The result of this addition is to
be placed into A4.

Letrs suppose we look inside Ag and AI, and find the
f ollowing numbers:

B-10

AO:
A1:

AO:
A1:
-5

gggfrgfigg
g6ggF 6gg

Here's the addition:
ggssfi0gg

+ gg0gr ggg
+FB

Those of you who charged ahead and got "ggggyAFB", stay
after class and spend 2 hours wr i ting 8g86 code t

The first thing to reeognize is that the number rr-5rt
NEGATIVE r and it thus must be represented as a minus
in 32-bit fotrm. This is done by an operation called
extens i on "

is
numbe r
sign

S ign extensior: takes the MSB and copies it into al l of the
higher bits. The 8-bit quantity is stretched to 32-bit form
Lry sign extension, which transf orms ttg'lgrt into ttFFFFFFE'Bft.
So now we can represent the add i t i on as :

A0z gggggggg
A1: + ggggV66g
-5 + FFFFFFFB

NOW can we do the addition?
Almost. But first we need to cheek the A1 value for SIZE,
I f the programmer meant "ggggV ggg" to be a 32-bi t quant i ty,
we can go ahead and add.

But if the programmer intended "ggggVggg't to be a 15-bit
guantity, then "FgAg'n reatly represents a negative number,
and i t mus t b,e s i gn ex tended to 32 bi ts "

S ince the rr. trrr extension was not suppl ied in the
instruction, we know that the AZ value is supposed
represent a 16-bit number. So vre must sign extend
preserve its minus sign:

to
toir

AO:
A1:
-5

frwfr gs sg g
+ FFFEE ggg
+ FFFFFFEB

B-11

FFFF EFFB

When does 25 plus 65539 equal 19?

Itrs when "FFFA" represents a 15-bit nurnber, and is
theref ore sign extended to represent rt-6rr.

Before sign extension:

After sign extension:

19 ggggggL3

What does sign extension do to a positive number? Nothing.
Look at these examples of sign extension, .and remember that
a positive number has an I'{SB of rt0, rt'

8-bi r l6-bi t 32-bi t

252
6s539

25:
-6

$ 2 3 $ss23
$ s r isssL

ggg g g gLg
+ ggggFFFA

ggggsgL9
+ FFFFFF'FA

$ss ss ss23
$sgsssssL

DATA REGISTERS AND ADDRESS REGISTERS

S ign extension can produce sorne unexpected results if you t re
not used to it. Before looking at its effect in Address
Registersr let t s first look at how Data Registers behave.

Data Registers act "normally'r. Data Registers can be loaded
wi th three di fferent si z€s r byte r word , and long word. OnIy
the portion of the register you load changes; the remaining
bits retain their previous value.
Suppose register D3 contains $egCngPgg. The instruction

MOVE.B *$23rD3

changes the contents of D3 to $egCnEEz3, and the
instruction

B-12

Now we can answer the question posed at the beginning of
this section:

tr"l0vg . W * $ Z 3 4 5 , D3

changes the contents of D3 to $49CD2345, What about this
instruction:

I'IOVE . L * $ 2 3 4 5 , D3

The Assernbler supplies theThi s loads 699A2345 inta D3 .
lead i ng zetos "

This is all pretty straightforward.
But no$, suppose Address Reg i s ter A 3 conta i ns $aeCDEF gg and
you execute this instruction:

I',IOVEA " W #$2345,A3

You might expect A3 to eentain $49CD2345, right? It
doesn't. The reason it doesnlL is that the 6869fr
automatically sign exLends "2345 " to 32 bits, wipirrg out the
16 high bits in the process. So the value in A3 is aetually
$sssfr23 4 s

Cons ider the fol lowing instructions :

MOVEA.W *$2345rA3

MOVEA.W #$9345rA4

The first one LoaCs $ggUg2345 into A3; the second one loads
$n'n'n'r9345 into A4"

Herets an important rule to remember:

15-bi t data which is loaded into an Address
Register is always automatically sign extended

I f you wish to sign extend a Data register, you can use the
EXT (extend) instructiorl . There are two f orms of the ExT
instruction. ExT,W extends an eight bit value to 15 bi ts,
and EXT.L extends a t6 bit value to 32 bits. rrExTrr works
only on Data registers r since sign extension is
automatically handled in Address registers.
There is one address rnode in which a Data Register is
automatical 1y sign extended. Consider thi s instruction:

B- 13

LEA $ 4S (A2, D3) ,\A
Werve seen one like this before, where the second registerwas an address reg i ster , not a data reg i ster . Because th i sis an address calculatioo r it is perfoimed in 32 bits.Thus, since D3 is specified as a 16-bit quantity (no ,'.t',),
it must first be sign extended.
D3 is sign extended for purposes of the address calculationonly--its contents are not rrtr>ermanently" sign extended, andthe upper 16 bits are preserved.
As wit,h the address register, you can force the entire32-bit contents of D3 to be added in the address calculationby putting a tt.Lrr extension onto ttpltte

LEA $4S (A2rD3.L) rA0

68vgg SIGN EXTENSION AND THE APPLE T.IEMORY.

The Q-68 boardrs low 64 Kbytes are occupied by the 64K
memory in the Apple II. As long as a 6\g0g program isreferencing addresses between $gTgg and $Znff, the,'short"form of address loading may be used. For example, to loadthe start of HIRES screen *f into A3, you may wr ite:

MOVEA *$2gggrA3
The 16-bit MOVE is ok since the 15th bit of this address isg, and the actual (sign extended) value loaded into A3 willbe $gggfiZgsg,

But what happens when you try this:
MOVEA *$9699,A3

You have speci f ied a si xteen bi t load (remember tha L MOVE isequi valent to r'lOVE .W) into A3, wi th an address t^rhose 15 thbit is a I, The actual value loaded into A3 is $rf,nn 96gg,which is nowhere near the Apple II memory spacel
The moral: whenever you load an address register with anApple address of $Bgg0 or higher, be sure to specify a full32-bi t load (us i ng the " . [," extens i on) .

8*i"4

Section 8.3 The TAS Instruetion

The TAS (test and set) instruction is one not usually found
in a mieroprocessor. It I s primary use is to allow multiple
processors which share the same bus to coordinate activities
wi thout runn i ng into each other "

TAS is the only "read-modi fy-wr i te" (RMw) instruction in the
68ggg. In a RMW cycle,
1. A mernory loeation is read into Lhe CPU (read).
2. The CPU does somet,hing with the data (modi f y) .

3 The CPU writes new data out to the same memory location
(write).

A TAS instruction implements these speci f ic steps :

1. A byte of data is read into the CPU. The TAS
instruction al lows hryte data on1y"

2. Tfre Z (zero) and N (negat-ive) condition codes are set
accord i ng to the byte read in step I . I f aI I ei ght bi ts
are At the Z flag is set; if the l'1SB (bit 7l is L, the N
flag is set.

3. The byte is rewritten to the same memory locatioor with
one change: Bit 7 is set to a l.

The TAS instruction is referred to as t'indivisiblet'r llt€aning
that once it starts execution, it can't be interrupted or
suspended in any synchronized manner" Of course a system
RESET will stop it, but Lhis assumes a catastrophic
restart.
What is the use of this strange instruction?
Letf s suppose that two 6896fi's and a single printer are
connected to the system bus. A bit is assigned which
indieates "pr inter busy--stay away". Both CPU r s can read and
set this bit. This bit is ealled a "semaphore't beeause it
is used as a signal flag between the two CPU I s.
I t is agreed that ei ther CPU wi I I test thi s bi t before us ing
the printer, to make sure that it doesntt start sending
characters to the printer while the other CPU is using it.
The agreed-upon format (protocol, in computerese) is that

B-15

the bit must be LOW to indicate not busy before either CpUcan use the pr inter, and a CpU which is going to use theprinter sets the bit high to keep the other one away.

Let's say CPU-A decides to use the printer. It reads thebitt finds it low, and sets it to a I to indicate that it isusing it (printer busy) . Now letts say CPU-B decides toprint somethiog. It checks the bit , finds it high, andwaits for CPU-A to finish.
Everything is finer €xcept for one case. What if CPU-A and
CPU-B try to use the printer at exactly the same time?
CPU-A reads a zero , indicating ready. I t takes CPU-A atleast one bus cycle to go back to memory to set the
semaphore to a 1. But before it does this, CPU-B reads thebit, and also finds it lowl
CPU-B also finds the printer ready, and proceeds to set the
semaphore to a one (just after CPU-A does). Both CpUts now
happily print away, and the result is garbage"
To prevent thi s case, the instruction which tests the
semaphore bit must also set the bitr so that there is no
chance of another CPU sliding in and testing the bit before
it is set. This rnechanisrn is what is referred to as an
"indivisible cycle"--the testing and setting cannot possibly
be disrupted.
The way the 6$ggg makes the TAS instruction indivisible is
to assert Address Strobe for the initial instruction fetch,
and then keep it low for the remainder of the cycle which
includes the urriting back part. Other CPU's sitting on the
bus know not to grab the bus while another CPU has pulled AS
lowr so the non- inter f er ing tirning i s accompl i shed .

8-16

Section 8.4 Two Stack Pointers Named 'rA7rt

There are two system stack pointers in the 68fr9fr. l,lotorola
confuses this feature a bit by calling them both "A7".

For example r suppose address register A3 contains $f920, and
you execute the following instruction:

I'IOVE.W D3r- (A3)

This moves the contents of D3 into the rnemory loeations
$l0fF and $1gIE. After the instruction exeeut€s r A3
contains $fglE" This instruction executes in four steps:
1

2

A3 is decremented by one. This puts its value at
$ 10lF .
The low byte of the low word in D3 is stored at (al; ,which is $IglF.
A3 is decremented by one again. I t is now $lglE.
The high byte of the low word in D3 is stored at (A3),
which is $101E.

What if you try:
t',tOVE. L D3, - (A3)

The 6Bggg is clever enough to real i ze that four bytes of
data are to be moved (from the rr.trrr extension) r and
deerements A3 f our times to store the data at \qlglF, $101E,
$lglD and $fglC.

3
4

The position of the minus sign
value i s deeremented before sto
in D3.

a reminder that the A3
ng eaeh byte of the value

1S
r1

B-I7

Before look i ng at the strange ease of the two 32-bi t
registers which have the same name, Letr s first clarify the
difference between a ttsystem" stack and a "normal" stack.
The 6lggg has two addressing modes which automatically
"bump" the contents of a memory pointer every time the
pointer is used . These are cal led the predecrement and
postinerement address modes. These modes apply only in
indireet address modes. Indirect addressing means that the
contents of an address register point to a loeation in
memory which holds a data value r rather than indicating the
data va Iue i tsel f .

Now let I s do the reverse, and load the bytes back into D3:

MOVE . W
MOVE. L

(A3)+,D3
(A3)+rD3

In the first case,
bytes into D3; in
t irnes due to the I
s ign f ol lowing the
A3 takes place aft

A 3 i s incremented tw i ce to load the two
the second case A3 is incremented four
ong word (. L) speci fication. The plus

(A3) reminds us that the incrementing of
er the data is moved.

In these examples A3 functions as a t,rue stack pointer. Wecould name these operations PUSH D3 and pop D3 (in a Macrorperhaps?) .
A prograrnmer f r i.end measures the value of a program by how
many PUSHres and POPts it contains. Fle loves stacks. you
shouLd have seen the fire in his eyes when he realized thatwith the 6BggU he could have 9 stacks going at oncet This
is possible because the predecrement and postincrement modescan be used on any of the 9 address reEisters.
You may have noticed that the 68ggg has no "pUSHrr or Itpop'r
instructions. You use the predecrement and postincrement
address modes to effect these instructions"

THE REAL STACK POI NTER (S)

Aside from the complernent of address registers which may be
used as stack pointeEsr there is an "officiaL" stack pointer
in the tVggfr. This is register A7. When any exception
happeos r the "pushed" data goes onto the stack areapointed-to by this register.
A7 is the reg i s ter wi th two names (three r dctua 1 ly , if you
incl-ude "A7"). It is krrown as the Supervisor Stack pointer
(SSP), and the User Stack Pointer (USP). Which it is called
depends on whether the 6BggA is running in User or
Supervisor state.

SUPERVISOR AND USER STATES

The idea behind these two states is that the 689fiA , bei ng a

B- 18

"big" machine, wif l likeIy be running an operating systern
which serves one or more "userstt. The operating system is
wr i t ten by the system arch i tect, who has the status of "H igh
Friesto'. Only the High Friest has the power to make the
really big mistakesr like running the stack into a data
table, or halting the processor.
The User has no such pr i vi leges. He is regarded as an
unknown quantity. He may be a mischievous hacker trying to
erase all the disk files. Or, he might simply be a beginner
who is like1y to make all kinds of programming mistakes.
In any eveftt,ttuserstt. the operating system must be insulated from

t{ence the Supervisor state. When anything unusual happens,
the supervisor state is entered, and the operating system
takes over. This is wlren hl beeomes the Supervisor Stack
Pointer "

Itf s easy to switch the 68ggg to User Mode.
Status Register is the rtgrt bit, which stands
"Supervisor". Simply set this bit to gI and
User mode. Now any reference to A1 will use
Po i nter .

Bir 13
for
you t re
the U ser

of the
1 n the

S taek

I t's not so easy to swi tch from User to Supervisor mode. I f
you try to set the Status Register back to a rrlrrr your 11
trigger a Privi. lege Violation exception. If the 68frfi9 is
indeed runninE an operating system, the exception wilI hand
control to the High Priest, who will take appropriate
action.
The 68ggg has output pins that indieate when it is in
Supervisor State or User State. The hardware designer (who
works with the High Priest) can enable operating system
memory only in the Supervisor State, and thus insure that it
i s not access ible to probing Users.
Note that certain information is "stacked" during an
exception. The A7 register called SSP serves as the stack
po i nter dur i ng except i ons .

THE Q-6I SU pERVr SOR/US ER DET"IOCRACY

The Q-68 board makes absolutely no di stinction between
Supervisor and User states. AII of its memory is accessible

8-19

in both states. The REGISTERS screen in DEBUG shows A7 as
SSP and USP. Remember that A7 represents ei ther SSP or USP,
depending on the state of the trgrr bit in the Status
Register.
When you start up the 68Ag8 on the Q-58 board, the initial
value of the SSP is fetched from 6BATB address g (Apple II
address $89 g) . This is set to $18 8gg, the top of onboard
Q-68 RAM. I f you are us i ng DEBUG , don I t rrror ry about
interfering with DEBUGts stack. Itrs at $18699.
When you enter the User stat€, A7 no longer points to the
system stack. The USP is now in effect, not the SSP. If
you wish to use the USP r you must first initialize A7 to
point to the top of your user stack. This wi t I NOT change
the value of SSP, since the SSP and USP are two distinct
regi steEs r even though they are both cal led "A7 ".

8-29

Section B " 5 68969 Go tcha #1 :

The Case of the Creeping Program S ize

A very strange thing happened to us whi le developing the
Qwer ty DEBUG pr og r am .

The program was developed wi th the Hacro Assembler , wi th the
program or igin at $fggfi . Once the program was debugged (we
sure could have used DEBUG to debug DEBUG) , it came time to
burn an EPRO[-{ f or use on the Q-58 hroard.

We made two changes to tkre DEBUG source program. First, the
program or igin was changed f,rom $1009 to $fg gB4, the
beginning of DEBUG in the EPROr,l. And second r a "targetaddress" direeti.ve was added t,o put the object ccde at
$r906.

.oR

.TA
$1ssB4
$Lssfr

When the assembly was complet€, we were astonished to find
that the program si. ze had increased by 7 4 bytes I

Same program, onl"y a dif ferenL origin. Whatr s going on?

Unfortunately, nobody makes a 8266 byte EPROMT so we had to
f ind the reason and put those 7 4 bytes back into the bi t
bucket, where they presumably came from.
After considerable head scratching, the solution was found
by examining instrueti<lns which dealt with program
addresses. In the origin $LqAg version, all address
ref erences were between g and $f'nn'f' (in the Apple I I memory
spaee). This meant that all addresses could use the 16 bit
form.
But when the program was reassembled with an origin of
$19984, the address references could no longer fit in t6
bits, so the assembler correctly generated the 32 bit form.
Consider the following pair of instructions. The assembler
op-codes are shown to the left of the instructions:

4789 ggAL gA84
4 7F 8 Lggg

LEA
LEA

$1ggg4rA3
$rggg rA3

8-2I

See the difference? The first one reguires six bytes--twofor the opcode (47F9) and four for the address (gggL ggT4) .The second one requires only four bytes--two for the opcode(47F8) and two more for the sixteen bit address LAgg.

Now that the problem was identified, how to fix it? How doyou reduce 32-bit address references to 16 bits?
The answer lies in the 6|ggg addressing modes cal1edt'PC-Relativett, which stands for ttprogram Counter Relativet,.
This mode is usually touted as the one which promotes
position independent code. But it also got us out of thelong address pinch. Here' s how.

In PC-ReIative addressing, the effective address is formed
by adding the current value of the program counter to af6-bit displacement. This 16-bit value is treated as atwors complement number, which means that it can be eitherpositive or negative.
This means that an address is not represented in absolute
form (such as $fgg84) , but rather as a distance from the
current instructioo. How far away can the address be? AI6-bit twors complement number can represent the range ofabout plus or minus 32rggg bytes.
In our case, the DEBUG program size is I kilobytesr so we
can eas i 1y ttreachtt anywhere in the program, f orward or
backward , wi th a 16 bi t offset.
So vre went back to the DEBUG source and changed al l absolute
memory references to PC relative addressing, and the program
shrank back to i ts f ormer si ze " I t no$, makes no di f ference
where it is assembled--the program is always the same size.
This is comforting "

To see how we rnade these changes, look at the f o l lowi ng
programs

Lg2g
Lg 4g
Lg6g TABLE

TABLE , A g
TABLE (PC) ,A I
$sssssss s

LEA
LEA
.DA

Line Lgzg represents the'rbefore" form. A table is about tobe accessed r so i ts address i s loaded i nto A0.

Line Lg[g is the t'after" (eorrected) forrn. Same table, but
now the PC relative mode is used.

8-22

Now letrs assembl-e this Frograrn at origin $fggfi. (We'
t.aken out the source eode line numbers for clarity) :

gugfrLggw- 41F8 Lfigg [,EA TABLE , A 0gggglgfr4* 43E"A gfigz [,EA TABrE (pC) , AI
fifigfrLgg8- #&glfi fifififfi TABLE . DA $gr gfrgfigfi

Both instructi ons gener&ted f,our*byte op-codes " In the
f irst 1ine, tt:e absalute aridress of TABLH (f fi08) appears in
the opcode. fn tire secan"l 1"ine, the displacement (distance)
from the address TAIILfi eppears in the opcode {$fifrZ) " You
might nctice that ti:e <i$ *p] acement is measured f rom the end
of the f i rst word *f tlre instruct ion opcode. Don t t wor ry
about this. The &ssemhl*.r fiqures out the eorrect
displacement fq:r yGu*

So farr trc) differencft hetween the two instructions, Ttrey
both use tlie same arn$unt *f memcry, and they bath do exaelly
the same thi ftl; " iiut n*w let I s reassemble tti* same progrem
at $1fifi84:

ve

gguLgfiB4* 41[r9
fi$9Lfrfi88- gfi8E
frgalgg 8A* 4 3FA
frtgLfrs I E- fi#fr$

figg1

gfr 82
fifrfiG

LEA
LEA

TABLE " DA

LEA
LEA
NOP
.DA

TABL,E , A O

TABt,E (PCi ,A1
$ssgfrfrfis6

TABLE , A g
TABLE (PC) ,Al

Now the first l.ine has gror,rn by two byt€sr to hr:ld the ful1
address fi#fi1 Gff88, whiclr is the new address for TABLE.

But TABLE is still the sarne number of bytes away from the
second instructian as l:eforer so exactly the same
instruction (43E'A frefiT, is generated I The PC relative mode
has saved two bytes when the program was assembled at an
address above $rrrF "

Just to show you how much work the assembler does for you,
let I s modi fy the program to change the di stance between the
LEA instruction and the address TABLE,

gggglgg6- 41FB Lggp.
frgggLag4- 43rA gga4
ggw$LfrfrB- 4E7L
gfrfigLfr$A- frg6g gggg TABLE gsgfifrguss

We stuck in a harmless rrNOPrr instruction just before
"TABLE". Now take a laok at the second word of the second
instructiCIn. This is the new displaeement to TABLE (fi6fr4) ,whieh is two bytes trar!]er than it was before we inserted the
two byte NCLr. This is because "TABLE" is two bytes further
away from the "LEA TABLE(PC)rAl" instruction than before.

8-23

One last item: donr t forget that the displacement can be
f orward or backward. I f TABLE is placed bef ore the tttrggtt
instruction, the offset value calculated by the assembler is
negative.
ggagLggg- gggg gggg
gggglggL- 4IE8 Lggggggglggg- 43FA FFF6

TABLE .DA
LEA
LEA

$ssssssss
TABLE , A O

TABLE (PC) ,A I
(For those of you without a hex calculator, $fff0 is -Lgl
Remember to start counting back from the end of the first
LEA opcode word (at the [E.B ") .

8-24

L

L

i

_

L

L

O

L

L

C

t.L

\C

L

C

L

!,":
l:",
IE

Fd
F

B"'
&.-
$

6l"r
ri-.t,
J
t
i** -
{
F.t'
i
ltf{.
i^,-afn.t

2

:

,

tI

i-
,

r
:

:

:

_

L

t_

INDEX

,AS ASCII String
.AT ASCII String
. BS E lock S tor age

.DA Data

.DA Directives

. DO Conditional Assem.

.ELSE Conditional Assem.

. EM End of Macro

. EN End of Pr ogram

. EQ Equate

.LEA Instruction

.LIST tisting Control

"r,tA Macro Definition
.OR Origin

"PG Page Control

. TA Target Address

. TF Target F i Ie
"TI Title

" US User Directive

A7 Stack Pointer (s)
ASCI I Characters

: ASM

Term
3*52
3*53

3-53

2-5,3-5I
8-6
3-55

3*55
3-58
3-5fr
3-5S

8-4
3-54

3-58

3- 41

3-s5

3-47
3-47
3-s4

3-58

B-17
3-62
3-39

.FIN Conditional Ass€Ifi. 3*55

.HS FIex String 3-52

.IN Inelude 3*59

: AUTO
Address
Address
Address
Address
Address
Address

set
Arithmetic
Modes 68ggg
ttodes Absolute
I.{odes PC Relative
Registers

3-4 r
4-23
8-r0
3-3
3-4
3-4
8-12
8-5
3-62
A-1
3- I
A-2
A-1
A-3
3-62
3-21
7-4
7-5

7-16
1-1
4-13
3-5
4-23
7-4 r7-L9

3-2, 3-3 5
4-13
D-3
4-13r8-3
D-3
4-14
4-14
4-1s
4-1s
4-15
4-L7
3-55
E-4
2-5
3-23
3-43
3-44
3-21

Addresses
Arithmetic Operators
Assernbler Configuration
Assembler I'lacro
Assembler t'lemory usage
AssembLer Operation
Assembler ROM usage
Asterisk
Automatic Line Numbers
Autovec tor
Autovectors

BERR
Book s
BREAK
Branch Instructions
Breakpo ints Screen
Bus Error

: COPY
CTL -B
CTI-B - How it works
CTL -D
CTL-D How it works
CTL-G
CTt -P
CTL -S
CTL -T
CTL-V
CTL -WCaI1 Parameters
Caut i ons
CIock 68ggg
Command s
Commands DOS
Commands I.{ON I TOR
Commen t

7

Comment setCounter set
Cursor
Cycle Sereen Command
Cycle Wi ndow

: DBUG
DEBUG Starting

: DELET E
DTAC K
Data Regi sters
Data S i zes
Data Values
Da ta Wi ndow
Deeimal Number s
Diagnostie routine
Disassemble One Instruetion
Di sassembly Sereen
Disk Inoperative
D i sk con tents
Disk Error
Display Digits
Dump Screen

: EDIT
ESCAPE
ESCAPE -tEditor
Elements
Error Apple goes dead
Errors Assembler
Errors Assembly
Errors Maero
Errors Run
Exception Veetors
Except i ons
Execution speed
Expans i on
Expans i on Macro
Express i ons operand
Ex tens i ons 68Agg ins tr .

4-2 4
4-23
3-22
4-L2
4- 13

3-3 B ,E-2
4-3
3-3 3
2-6 t 7 -LL
8-12
8-1
8-3
4-9
3-61
2*9
4*26
4-2L
E-1
A-1
B-1
4*28
4-13

3-31
4- 13
3-2L
3-2
3-61
E-2
B-1
4-2
3-7 3
4-3
4-25
7-1
2-8
2- 1l
3-59
3-51
3-5

t

S FAST
:FIND
Eans
Fields
F ields
Fields
F ie lds
Fields

C ommen t
Labe I
Opcode
Operand
source code

3-37
3-3s
2-L2
3-2L
3-16
3-19
3-2s
3-r6

4-L 4

4-L2
3-25
7-1
3-5I

3-42
r-3
3-6
2-11
7-8
7-4
7-5

2-9
2-9
2-9

3-39
3-24
3-16,3-61r9-3
3-17
3-17
3-r9 3-68
B-5
3- 15
D-6
D -1I

Go

HELP Screen
:HIDE
Hardware
Hexidecimal Numbers

: INC
Installation
Instructions cond. branch
I NTAC K
Interrupt Exercising
Inter rupt Autovector
Interrupt,s

Jumper 1
Jumper 2
Jumper 3

:LIST
: LOAD
Labe I s
Labels Local
["abe I s No rma I
Labels Private
Labels as Addresses
Line numbering automatic
Listing 65g2
Listing BASIC

Low Memory

: MANUAL
: MEMORY

MEMOVB
: MERGE
: I'IGO
: MNTR
Maero Assembler
Macros
Macr os nes t i ng
Memory 6592
Memory 68gg8
Memory Uses for e-68
Mernory eycle
Memory Map
Memory Screen
Memory shared
Memory swapping
Memory usage Apple
Memory usage DEBUG
MessaEe Di splay

: NEW
Numbers Decimal
Number s Hex idec ima I

Opcode
Oper and
Operators Arithmetic
Operators Relational
Options e-68 board

: PRT
Page Zero
Parameters Macro
Parameter s Range
Parameters String
Power Consumption
Program assembl ing

2-3

3-41
3-42
2-7
3-25
3:3 9
3- 42
3-1
3-6s
3-71
2-2
2*L
2-B
2-1
2*L
4-19
2-2
2*5
2-2
4-26
4-27

3-24
3-61
3-61

3-19
3-26 ,3-6 I
3-62
3-62
2-9

3-37
2-4
3-56
3-28
3- 2I
2-L2
3-LA

Program enter i ng
Program executing
Prograrn modifying
Program saving

Q-68 Board
Q-68 Bcard Expansion
Q-58 Board Opt i ons
Q-68 Board Quick Check
Q-68. STARTUP "BIN listing

: QON
QPAK-68 Startup
QPAK.STARTUP listing

: RENUMBER
: REPLACE
RESET Vector

: RESTORE
: RST
Registers
Reg isters Screen
Relational Operators
Remo te t'lode
Rout i nes DEBUG

: SAVE
: SLOW
; SY},IBOLS
Screens AppIe
Screens Breakpoi nts
Screens Di sassembly
Screens Memory
Screens Reg i sters
Scroll Screen
Set Address
Set Comment
Set Counter
Set Program Counter
Set Stalus Register
Sign Extension
Sound zip
Speed execution

7
I3
r3
9

3-
3-
3-
3-

2-r1
2-9
C-I
D-5
r-4 r 3-38
D-t
D -11

3-34
3-32
2-5 ,7 -2
3-27
3-43
8-r2
4-IB
3-62
4-25 , D -4
4-26

3-24
3-37
3- 4g
4-15
4-23
4-2L
4-19
4-18
4-L2
4-23
4-24
4-23
4- 14
4-15
B-9, B-14
4-29
2-8

I

Stack operations
Staek Pointers
S tar tup
Status Window
Supervisor
Syntax Assembler

TB-l j umpers
TAS Instruction

: TEXT'
TRAP *15
Tab S tops
Test Procedure
Tests Q-68 Board
T ime r Wa tchdog
T irni ng sys tem
Tr ace
Two I s Complement

: USR
User's Guide
User S tates

: VAL
Vectors
VIDEOTEST
View Apple Screens

Warranty
Wa tchd og
Watchdog T imer

mpe r
mpe r

Xl-X2 Ju
X3-X4 Ju

2-B
8-17
l-3
4-Ls
B-18
3-3

2-9
8-1s
3-25
4-24 r 7 -4
3-16
5-2
5-I
2-6
2-5
4-15
B-9

3-4 3
L-2
8-18

3- 4g
7-6
2-7
4-r5

5-2
7-11
2-6 ,z-LL

2-LA
2-Lg

\ Ztp sound 4-29

I

*E

ba

t

