QPAK-68 User's Guide

The contents of this manual and the software products it
describes are copyrighted 1983 by Qwerty, Inc. Neither
the manual nor the diskette, or any part thereof, may be
copied by any means without prior written consent
(except for the personal use of the registered owner).

Chapter 3 is based on the "S-C Macro Assembler" manual
for the 6562 Macro Assembler, which is copyrighted by
5~-C Software Corporation. The manual has been enlarged
and updated for 68000 operation for inclusion in this
manual.

The 6800¢ Macro Assembler (3 versions) on the diskette
are supplied under license from, and are copyrighted by,
S-C Software Corporation.

Apple is a trademark of Apple Computer, Inc.

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS
OR IMPLIED, REGARDING THE ENCLOSED COMPUTER SOFTWARE
PACKAGE, ITS MERCHANTABILITY OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED WARRANTIES
IS NOT PERMITTED BY SOME STATES. THE ABOVE EXCLUSION
MAY NOT APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH
SPECIFIC LEGAL RIGHTS. THERE MAY BE OTHER RIGHTS THAT
YOU MAY HAVE WHICH VARY FROM STATE TO STATE.

DOS 3.3 is a copyrighted program of Apple Computer, Inc.
licensed to QWERTY, INC to distribute for use only in
combination with QPAK-68. Apple software shall not be
copied onto another diskette (except for archive
purposes) or into memory unless as part of the execution
of QPAK-68, When QPAK-68 has completed execution Apple
software shall not be used by any other program.

Copyright (C) October, 1983

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

Qwerty, Inc. ("Qwerty") makes no warranties, either
express or implied, with respect to this documentation
or with respect to the software described in this
publication, its quality, performance, merchantability,
or fitness for any particular purpose. Quwerty software
is sold or licensed "as is". The entire risk as to its
quality and performance is with the buyer. Should the
programs prove defective following their purchase, the
buyer (and not Qwerty, its distributor or its retailer)
assumes the entire cost of all necessary servicing,
repair, or correction and any incidental or
consequential damages. In no event will Qwerty be
liable for direct, indirect, incidental or consequential
damages resulting from any defect in the software, even
if Qwerty has been advised of the possibility of such
damages. Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or conseqguential damages, so the above
limitation or exclusion may not apply to you.

WARRANTY

Qwerty, Inc. ("Qwerty") warrants the Q-68 PC card to be
free from defects in material and workmanship for a
period of ninety (90) days from the date of original
purchase for use. Qwerty agrees to repair or, at its
option, replace any defective units without charge
during this warranty period upon prepaid shipment and
receipt of the unit at Qwerty Inc, San Diego, Calif.
Qwerty assumes no responsibility for any direct,
indirect, incidental, special or consequential damages
resulting from any defect in the hardware. Some states
do not allow the exclusion or limitation of implied
warranties or liability for incidental or consequential
damages, so the above limitation or exclusion may not
apply to you., This warranty is non-transferrable. This
warranty is valid when registered within ten (1¢) days
of purchase date. (QPAK-68 Registration Card enclosed).
No other warranty, written or verbal, is authorized by
Qwerty.

QPAK-68

System Reference Manual

Table of Contents.

Part I.

Chapter 1 -- Getting Started

What You Bought....eeeeeeeeee

What You Need...oveeeeeennannas

What's In the BOX...veaeeonss
Installation And Startup.....

Chapter 2 -- The Q-68 Board

Introduction..e.eeeeeeeeeanees

Low Memory is Also Important to the 6562.

The Double Page Zero Dilemma.
The Watchdog Timer.....cec...
System Timing...ceceeenceacns
More Uses For Q-68 Memory....
Q-68 Board User Options......
X1-X2 JUMPer eeessecesscosonss
X3-X4 JUMPer ceeevreenccosnnas
Expanding the Q-68 Board.....
Power Consumption and Fans...

Chapter 3 -- The Macro Assembler

3.1

3.2

3.3

- Introduction....veeeeennennn
The Macro Assembler......
The EAitor.iieeeeeeaaenns

- 68000 Assembler SyntaX.......
Address MOdeS.eeeeancesns
Absolute Address Modes,..
PC Relative Mode..ceeevens

.

.

The QPAK-68 System

e e e eoense .

MEMOYY MaAP:eeeeeeseeseoesecascsosconssns
Low Memory is Important to the 68008....

e

.

68000 EXtensSioNS.eeeeseesesscens
Conditional Branch Instructions.
Miscellaneous NOteS...eeeeeeoans

- Tutorial.i.eeieeieeeeeennenn ceseeeeeen

.
NN NN RNNNN RN NN
)
= e O 0N O B W W

.
i

|

.

.

.

.

3.4

3.5

Entering a Program...ceececeesoceeass
Saving a Source Program on Disk......

Assembling a Source Program...........

Executing the Object Program.......
Modifying a Source Program.........

Easier Entry of Source Programs..... x

~ SOUXCe PrOgramMS...ceoeccsessessacsscnsccses
Automatic Line Numbering......
Built-In Tab StOPS.ceeeesecces

Label Field........
Normal Labels..

Local Labels..

Private Labels

Opcode Field......
Operand Field.....
Comment Field.....
Comment Lines.
ESCAPE-L.cascsn

Cursor Controls.
~ CommandS..eeecesncns

Assembler Commands..
Source Commands.
NEW.:.eeeoens
LOAD.veevonn

SAVE. iveaeses
TEXTeeeeoeos
HIDE....o00.
MERGE....00
RESTORE.....

Editing Commands.
Range Parameters..
String Parameters.
LIST and FIND.
EDIT.eeeeennns

REPLACE.....
DELETE......
RENUMBER. ...
COPY.uiooenne

Listing Contrel Commands

.

s s e 00500

FAST and SLOW...s...

PRT..eeeeceocscancen

"
) ceeeeetaccscnanansenans

Execute 680008 Code Commands...

QON.eeeeoene
DBUG....o0ue
Object Commands.
ASM..ceennne

°

oo e s

200 s

e e e

.

.

e s e

.

MOy ewsnsmnsnsnansssss
VAL.:eoeveoroananeans
SYMBOLS ..ot eeencans
Miscellaneous Commands.

AUTO..ueeeennn
MANUAL......0.
INCREMENT.....
MEMORY........
MNTR..........
RST.eeeennnann

USR:teeeenneeoeann .

DOS Commands......
Monitor Commands..

3.6 - DirectiveS..uiieeevensan

o e

.

.OR == Origin.........
.TA -- Target Address.
.TF ~-- Target File....
+IN -- Include........
.EN -- End of Program.
.EQ -- Equate.........
.DA -- Data......c.u0n
.HS -- Hex String.....
«AS -- ASCII String.........
AT -- ASCII String Terminated......3-53
.BS -- Block Storage....ceceeeeeeesss3=-53
2TI == Title.iseeeieeeneossncennneeald=54

.LIST

c e s

ceeeeeaa3-47

[- 1

cieeeees3=-50

...... «.3-52

-- Listing Control...........3-54

.PG -- Page Control......coeveeeeesse3-55
.DO -- Conditional Assembly.........3-55
.ELSE -- Conditional Assembly.......3-55
.FIN -- Conditional Assembly........3-55
.MA -- Macro Definition.............3-58
.EM -- End of Macro......vcecveeee..3-58
.US -- User Directive.....

3.7 - Operand Expressions.....

Elements....oieeeeeacnaas
Decimal Numbers......
Hexadecimal Numbers..
Labels...ieieenennnse
Literal ASCII Characters.
ASterisk (*).eeeeeoeoeass

.o

Operators...c.iieeeeecccannonne

/e

Arithmetic: +,
Relational: <,

*

14

r

P Peceena

ceeesesa3=58

ceeeesea3-62

3B = MACKOS .ttt eesarooneenennesenoennnnnnnens

Chapter 4 --

Why
Two

A Simple MaCrO.iieeeeeenneeeenennns
Call ParametersS.....eeeeeesseeeennn.
Private Labels.....eeeeeeeeneennnann
Listing the Macro Expansion.........
Using Conditional Assembly in Macros
Nested Macro Definitons......eeeen..
POSSible EIrrOrS..eeeeeeeeenencecesas
Macros and SubroutinesS.....cevecee..

The Qwerty Debugger

use a Debugger?. . iiiieeeeenencenenns
Kinds of ErrorS....eeeeeeeeeenneenns
AssSembly EIrrOrS...eeeeeeeeneneenneasn
RUN ELEOrS...uiieeseeeeecennnnnnoanns

Starting DEBUG...ueeeeeeeesonensannnnnns

For
The

The

The
The
The

The

Those Who Can't Wait....eveeeeenonnnn
Five DEBUG SCIEeNS..vveeeeesnnannnn.
The Data Window...ieeeseeeeennennanans
The Status Window..ue.veeeinennnnnnnn
HELP SCreen......oceiricncecanecennns
<-- and -->,....Cycle Screens.......
< and >eeeesScroll Screen,......
ESCAPE..........Cycle Window Command
CTL~B.veeeseeseseBREAK. i eiiienencenns
CTL-DeceevoeoeesDUMD SCLEEN.ewswusss
CTL=GueeeeveoeeeaBG0ieneeeeennconsonsn
CTL-P...........5et Program Counter.
CTL-S...........5et Status Register.
(O PR (PP - VoT <X
CTL-V...veeve....View Apple Screens.,.
CIL-W...........Displayed Data Width
REGISTERS SCrEeN.ui:ceeeereeeeeocaans
MEMORY SCreeN..cieeceececcneseoannns
DISASSEMBLY SCIr@eN...eceeenecencononss
A Pointed ISSUE.ieesreesensossoasans
BREAKPOINTS SCreeD..eescececocenness
Set AddresSS...ieeieiecocecanecacnnnnnns
Set Counter..iiiiieenseescesanannnesns
Set Comment,.veeeeecoeeonoennnosonns
TRAP #1l5u cvsucsvnssssmiomimonnmesmani

EXCeption VeCtOrS.uereeieneennooanennnnns
Remote Mode...viierieiiirneeennnannnann
DEBUG MemOLY US8J€.uiennscecennnsennescs
Useful DEBUG ROUEINES.eiioenneenenneenns

Disassemble One Line of 6880¢ Code..
Put Message on Apple 48-Col Screen..
Display Hex and Binary Digits.......

.

.

.

..3-71
..3-73
..3-73

.
.

.
.

.
.
i

.
.

.
.
i

.
.

L Y~ A I I - S-S
i

=

88

.
.

t t
W00 U W W N

I
— =
NN

P
. e

{
fan
w

e
.

..4-13
..4-13
..4-14
..4-14
..4-15
..4-15
..4-15
. 4=17
..4-18
..4-19
..4-21
.. 4-22
..4-23
..4-23
.. 4=-23
..4-24
..4-24
..4-25
.. 4-25
..4-26
..4-26

.. 4=-27
..4-28

Zip SOUNA.i.etovecosartoossanscncoanesesd=29

Chapter 5 ~- Self Test

Preliminary TestS.....ceecveccecccoscansnassd=l
The Obligatory Warranty Statement...........5-2
Test Procedur@.....eeeececececscenssccssssead=2

Chapter 6 -~ Appendix

Appendix A: Macro Assembler Operation and
Memory USage.ceeeeeeseeanoesssssA-l
Configuration RequirementS........c.....A-1
Contents of the DisKivieeeeeaoeoaseaanesA-1l
Memory USAg@..c.eeeeececcsecsceassnesesssA=2
ROM USAQJ€.uceeeecesceseacsssascassesessssA=3

Appendix B: Assembler Error MessageS........B-1

Appendix C: Quick Check of the Q-68 Board...C-1

1

Appendix D: Starting Up QPAK-68......cc00..
HOW CTL-D WOrKS.:eeeeeoeesaoacenncasosns
HOW CTL-B WOrKS..ioeeueonsseoosnsansneos
Remote MOd@...eieenesocesscsscscanannes
6502 Listing: Q-68,.STARTUP.BIN..ecevaaon
BASIC Listing: QPAK.STARTUP.ue:ceaescsss

vBelvivivie]

t
oW W

Appendix E: Things That Could Go Wrong....
BASIC Behaves Erratically.cececccoceeas
The Disk Doesn't Work (I/0 Error)......
Apple Goes Completely Dead..ceesececsas
Nothing Happens When I Type "QON".......
Typing "DBUG"” Does NOt WOrK....eoeeeeses
Can't Pass Characters to DEBUG (Remote).
DEBUG "CTL-D" Command Doesn't Work......
CautioNS.ieeeerececasscoasoccsccnnsssons

.

mHEHOEmmm |
|
W W NN

Section II -- 680008 Design Topics

Chapter 7 -- Hardware Topics

7.1 ~ EXCeptionS.ieeeeeeeeenneenonnenns

The RESET VeCtOor.ieieeeeaeonas
BUS ErrOF..i.eeeeecnsncocecnans
Level 7 Interrupt Autovector.,
TRAP 150, . iuineeereconannnnnns

7.2 - 68000 InterruptS..eeeeeeceeses

7.3 - DB&W: DTACK, Bus Errors,

VeCtorS..ieeeeeennennnnsnas
Autovectors...eecetenceeenn
Fitting 64 Pins into 48,..

Exercising the 68000 Interrpt System..

.

.

.

.

and Watchdogs....

What is DTACK, and How Do I Use It?...
DTACK ca s vommemoomosnnvanssnsdaisnsineienn
More About DTACK, All About Watchdogs..
BERR: Another Way to End a Bus Cycle...
Trying Out the Bus Error Mechanism With

the Q-68 Board......envee.
There Are Actually Three Ways..

Chapter 8 -~ Software Topics

8.1

- Data SiZeS....iiisesncenseanaonan
Numerous Practical Exanmples,
Labels as Data Values.......

- Sign EXtension......ecenennn.

- The

- Two

With the "LEA™

Instruction..

Labels as Addresses.........
Labels in ".DA" Directives..

A Parting Question........

.

when Does 25 Plus 65,533 Equal
Some Two's Complement Stuff....,.. "

68009 Address Arithmetic..

68009 Sign Extension
and the Apple Memocry

s s e e s

Data Registers and Address Registers.

TAS InStruction..veee veeonan

A

Th al Stack Pointer

Stack Pointers Named "A
g {
Supervisor and User 3

e
5

.

.

.7-11
.7-11
.7-11
.7-15
.7-16

The Q-68 Board
Supervisor/User DemoCracCy¥..eeeees...8-19

8.5 - 680060 Gotcha #1:
The Case of the Creeping Program Size.......8-21

Chapter 9 -- Application Notes
Chapter 10 -~ Inserts-1
Chapter 11 -- Inserts-2

Chapter 12 -- Index

| Getting Started

pajie)S 3uran

Chapter 1 -~ GETTING STARTED

WHAT YOU BOUGHT

The QPAK-68 is your window into the fascinating world of the
680008 microprocessor, It allows you to turn any Apple II,
II+ or Ile computer into a full function 68008 development
system,

WHAT YOU NEED

You need a 48K Apple, and a single disk drive, as a
minimum,

A 16K (language) card (or IIe) is highly recommended, so
that you can write large programs without having to save
sections of them on disk. Two versions of the 6800¢ cross
assembler are supplied, one for use with a language card,
one for use without.

WHAT'S IN THE BOX

First, some books. These are the best books on the 68000
microprocessor we've found.

1. The 68000: Principles and Programming, by Leo Scanlon.
Scanlon is one of the best technical writers going. He
uses an easy, clear style, and really knows his stuff.
This is an ideal first book on the 68000.

3. MC68008 16-Bit Microprocessor With 8-Bit Data Bus.
Motorola ADI-939.

This is the data sheet for the 68008, the CPU used in
the QPAK~68. You hardware types will love the fold-out
timing diagram at the rear of the book.

The 680008 User's Guide (Motorola).

The standard reference for programming the 68@¢@d. Each
instruction is described in detail. A bit dry, but very
informative.

QPAK-68 User's Guide.

This book (which you're reading now) provides
installation and operating instructions for the
QPAK-68.

Part 1 deals with the system components--editor,
assembler, debugger, and Q-68 board information.

Just as we searched far and wide for the best 68000
books, we also looked for and found the best (we think)
cross assembler for the 680¢0. It is written by S-C
Software Corp.

This is a great Macro Assembler. It is simple, powerful
and easy to use. And, there is a hidden bonus to
learning and using this assembler. S-C also makes cross
assemblers for other CPU's. You can get them for the
8048, the 780, the 68089, even the PDP-11. And they're
all available at very reasonable cost.

The beauty of the S-C approach is that you learn the
operation of the assembler only once. All of their
other cross assemblers use exactly the same syntax, data
types, pseudo-ops, etc. This means that you can move
from CPU to CPU without seeming to change assemblers.
This is a sensible and practical approach.

Tucked into this User's Guide is a diskette containing
the Macro Assembler. The diskette is not copy
protected; back it up immediately and use only your
backup copies.

Part 2 of this User's guide contains tutorial
information on the 68¢0@ microprocessor. Hardware and
software topics are discussed and illustrated with
actual 68000 programs. These programs are included with
the QPAK-68 diskette so you can run and watch them
yourself.

An Apple II hardware board, called the Q-68. This is
the magic part of the package. It adds a 68008
processor to the Apple computer, and allows you to
actually run the code you developed using the Macro
Assembler, To aid you in finding program bugs, the
board also includes a firmware monitor/debugger (in
EPROM) which allows you to see exactly what's happening
inside the 68008.

A pocket guide to the 68000 instruction set. 1If this
little book is not dog-eared after about 6 months, you
aren't making full use of your QPAK-68 system!

A 68000 folding programming card. The official
reference card from Motorola. Put this card in your
shirt pocket and impress your friends.

INSTALLATION AND STARTUP

Look for the box with the Q-68 board in it.

Turn off your Apple II and remove the cover. You need
an Apple II, II+ or IIe with 48K of RAM, and a disk.
Although you can run the system with or without a
language (16K RAM) card, you should have one if you plan
to write and assemble large programs. If you have a
Ile, the "language card" is built-in,

Insert the Q-68 board into a vacant slot. The system is
initially configured for operation in slot 4, the fourth
slot from the RIGHT. If you already have something in
slot 4, use another slot and remember which one for step
6.

Leave the cover off, so you can see the two lights on

the Q-68 board. Locate the diskette inside the cover of
this book.

MAKE A COUPLE OF BACKUP COPIES OF THIS DISKETTE. We did
NOT copy protect this diskette. Always use backup
copies for your work, never the original. The "COPYA"
program on your DOS 3.3 System Diskette works fine for
making a copy.

Put the diskette in drive 1, and power up. The QPAK-68
system automatically loads, and you are given five

11.

choices from an onscreen menu.

If you didn't use slot 4 for the Q-68 board, choose
menu item 1 and reconfigure the system for your
particular slot. When the slot shown at the top of the
screen matches the slot your Q-68 card occupies, select
item 6.

If you have a language card or a Ile, select item 4 from
the menu, "RUN ASSEM. AT $D@@@". If you don't have a
language card, select item 6.

NOTE: Item 6 is not shown on the menu. It loads a
special version of the assembler at $4000 for this
demonstration only.

This special version allows short programs which use
HIRES screen #1 to run without the language card version
of the assembler (the language card version avoids the
HIRES memory) .

If you do not have a language card and wish to write
programs that use the HIRES screen #1, you can use this
version of the assembler.

After about 28 seconds, you should be on the air with
the EDITOR/ASSEMBLER. You'll know you are in the EDIT
mode by the colon (:) prompt. S~

Type LOAD DEMOl, followed by RETURN. (All commands are
followed by RETURN).

Type LIST, RETURN, to see a real live 68006 program,

Back at the (:) prompt, type ASM, RETURN. This
assembles the DEMOl program. Quick, isn't it?

Now type QON, RETURN. This starts the 680¢8. The red
light on the Q-68 board should be ON. Do you see wild
gyrations on your Apple II screen? 1If you do, all is
well., 1If you don't, something is wrong. Go directly to
Chapter 5, "Self-Test".

Notice that the four line text window at the bottom of
the screen is still active. The 68068 is running the
top of the screen, and the Apple's 6502 is running the
text window, both at the same time,

Type MNTR, RETURN. This takes yocu to the Apple monitor,
with the familiar (*) prompt.

12.

13.

14.

Type C@C3, RETURN. You should hear a "ZzZip" sound, and
the screen should stop cycling during the sound. 1If
this happens, you have successfully activated the Q-68
interrupt. Don't worry about the numbers shown at the
bottom of the screen. The Apple has read location
$C@C3, and found meaningless information there. The act
of simply accessing this memory location does the job of
interrupting the Q-68 board.

Hit the RESET key (ctl-RESET on the Ile). This stops
the Q0-68 board, and takes you back to the EDITOR.

Now type DBUG, RETURN. This starts the Q-68 board
again; this time running the DEBUG program out of
onboard EPROM.

Use the right and left arrows to see the five DEBUG
screens.

You're in business!

If you didn't get the expected results, proceed directly to
Chapter 5, "Self-Test".

1-5

\ Q-68 Board

pieog 89-0O

Chapter 2: The Q-68 BOARD

INTRODUCTION

The Q-68 board adds a second processor, the 68008, to the
Apple II computer. It plugs into any slot (#1-%#7) and
shares the 64K memory on the Apple's motherboard. If the
Apple I1 has a 16K language card, this additional memory is
also accessible by the 68008.

The 68008 runs simultaneously with the Apple's 6502 on a
cycle sharing basis. Whenever the Q-68 board needs access
to an Apple resource (such as the graphics screen or
keyboard) it lengthens the 6502 clock and inserts a memory
cycle of its own.

The Q-68 board is controlled--turned on, turned off and
interrupted--by the Apple I1I computer.

The Q-68 board makes no distinction between User and
Supervisor states. This means that you can use either
operating mode, and switch freely between them.

The 68008 is capable of addressing a megabyte of memory. It

is convenient in this application to consider the megabyte
as sixteen 64 Kilobyte areas.

MEMORY MAP

The complete memory map for the 68068 on the Q-68 board is
shown on the following page.

SFO000-SFFFFF Open

SEQ00Q-SEFFFF .
$DO@O@O-SDFFFF .
$CO0B0-SCFFFF .
SBOBYI-SBFFFF .
SAGOB0-SAFFFF .
$90000-~S9FFFF .
$800060-S8FFFF for
$70000-STFFFF .
S6000@-S6FFFF .
$50000~S5FFFF .
S40000-$4FFFF .
$30000-S3FFFF .
$20000-$2FFFF options
$18000~-S1FFFF Onboard RAM, 2 Kilobytes

(expandable to 8 Kilobytes)

$10080-$17FFF Onboard EPROM, 8 Kilobytes
(expandable to 32 Kilobytes)

$0Q0QPP-SOFFFF Apple II memory

The lowest 64-Kbytes of 68608 address space is occupied by
all the memory in the Apple II. The next 64-Kbyte space is
occupied by memory on the Q-68 board. Locations $1600¢
through §17FFF are occupied by an onboard 8-Kbyte EPROM, and
locations $180@0 through $1FFFF are occupied by an onboard
2-Kbyte RAM. Both of these memory spaces "wrap around”.

For example, the 2-Kbyte RAM can be addressed starting at
$1800@, $18800, $190¢d, and so on up to $1F800 (sixteen
places).

If larger memories are installed on the Q-68 board (for
example, an 8 Kilobyte RAM or a 16 Kilobyte EPROM) the
starting addresses are the same as for the smaller
memories,

The other fourteen 64K areas of 68008 memory are free for
expansion. An expansion connector on top of the board is
provided for interface to future options such as memory and
video boards.

We need to take a careful look at the bottom 64K of memory.
This is the Apple memory, which is shared by the 68308,
When you run the Macro assembler, it puts 68808 object code
here.

Both the 6502 and the 68008 can read and write this low
memory. We will thus refer to the shared memory as being
accessed from the Apple (6502) side and the Q-68 (68¢08)
side. When you do an assembly of 68008 code, it is put into
the memory from the Apple side. When you actually run the
code by turning on the Q-68 board, it is accessed from the
Q-68 side.

LOW MEMORY IS IMPORTANT TO THE 68008

The low memory for the 68008 has special significance. Aall
of the exception vectors reside on pages @ through 3
($0000008 through $6¢@3FF). We'll talk a lot more about
exceptions, but for now let's just say that important
information required for 68008 operation is stored in these
bottom three pages.

For example, when the 680@8 first turns on, it fetches two
32 bit values from locations @ and 4 (the 68008 addresses
memory in bytes, so a 32 bit word spans four bytes). The 32
bit contents of locations @-3 are loaded into the Ssp
(system stack pointer), and the 32 bit contents of locations
4-7 are loaded into the PC (program counter). 68008
operation then begins at the address held in the PC.

Take a look at page 5-4 of the MC68608 data booklet supplied
with your QPAK-68. This Vector Table shows what the 68008
expects to find in the bottom 1K of memory. If you are
curious about these functions, refer to the application
section on "exceptions" in Section 7.1 of this manual.

LOW MEMORY IS ALSO IMPORTANT TO THE 6502

The low memory (bottom 256 bytes) of the Apple II also has
special significance. Page @ is the only section of 6502
memory which can hold memory pointers which are used for
indirect addressing. Also, special 6502 instructions can
access "page zero" locations faster than elsewhere in
memory. For these reasons, all Apple II software, including
the monitor, DOS, and Applesoft BASIC make heavy use of
these precious 256 bytes on page 0.

Page 1 is used by the 6582 to hold the stack. Page 2 is)
used by the monitor as a keyboard buffer. Page 3 is used to

store 6502 vectors—--addresses of routines for handling the
RESET key, and the BRK instruction, for example.

THE DOUBLE PAGE ZERO DILEMMA

We seem to have a problem here. 1In order to prepare for
turning on the 68008, the Apple (actually the Assembler,
running in the Apple) must load certain values into low
memory. But loading the values necessary for 68008 startup
at locations ©-7 (and others on page @) would interfere with
proper operation of the Apple. For this reason, special
circuitry on the Q-68 board moves the bottom of 68088 memory
out of the bottom of the Apple's memory map.

Specifically, it swaps pages $0-$3 with pages $8-$B. This
means, for example, that to put a number at 68088 location
$0904, the Apple writes it at location $08084. The fact that
these memory spaces are swapped means that the assembler can
also access 68008 pages $8 through $B--by writing pages $0
through $3.

All other memory is left alone. Location $2ABC in the Apple
corresponds to location $@2ABC in the 680¢8, for example.

The following diagram shows this memory swapping in detail.

Apple Memory

SFFFF SFFFF
As Viewed (no change) As Viewed
From the From the
Apple 68008
S@BFF SO3FF

sesfm $¢(:5¢¢

(no change)

S@3FF SOBFF

. .

Se000e $@809

Note that the right half of this diagram shows that writing
68008 locations $800 through $BFF corresponds to Apple pages
$8 through $3. Using these 68008 locations is definitely
not recommended due to the overlap of the critical Apple low
memory. If you really need to put data there, you're on
your own as far as the Apple is concerned.

Here are some practical examples of how this memory swapping
works.

Every 68008 program requires that the RESET vectors be
initialized. The diagram above shows that 68008 page @
corresponds to Apple page 8. So code of the following form
is required somewhere in the 680¢8 source, Keep in mind
that this is code "as viewed by the Apple", since it is
generated by the cross assembler. The vector addresses
shown are for example purposes--they can be anything.

.OR 5800 ;Locates this code at 68¢0¢8 PAGE @
.DA SQe0005000 ;SSP (Supervisor Stack Pointer)
.DA 500001000 ; PC--PROGRAM START ADDRESS

The .DA directive means, "store the numeric constant in
memory". This code establishes the SSP at $500%, and begins
execution at $1¢@0.

If a routine is to be called as an exception, its address is
placed at the proper place in the 68008 page 8 vector

table, For example, the routine whose address is placed at
Apple location $88¢ (68008 location $80) will be executed
whenever a TRAP #0 instruction is encountered. If you use
the QPAK-68 system disk to start up the Q-68 board, you
don't need to worry about installing the startup vectors.
The system does this for you. Appendix D shows you how this
is done.

THE WATCHDOG TIMER

In the course of writing and debugging machine code, it is
possible that you will inadvertently attempt to access
memory which does not exist in the Q-68 system. If no
special measures are taken to allow for this possibility,
your program can hang up indefinitely. What actually
happens is that the 68008 patiently waits for a DTACK signal
(Data Transfer Acknowledge) which never comes. See Section
7.3 for more information about DTACK.

The Q-68 board incorporates a special timer which detects an
attempted access to nonexistent memory, and activates the
BERR (Bus ERRor) signal on the 68008 if this happens. This
triggers an exception sequence, which you (and the supplied
DEBUG program) can use to recover from the error.

If a memory does not respond within 180 microseconds after
being accessed, the watchdog timer trips a Bus Error
exception, When this happens, the 68988 stacks the PC,
Status Register, and other processor status information,
then jumps to the address held at 68008 location
$000608~-500868B. (These addresses correspond to $8¢8-$8¢B in
the Apple 11).

1f you have an application which calls for a longer response
time than 180 microseconds {(an example might be a video
system where the CPU waits for vertical blanking before

updating the video memory}, the watchdog timer can be
disabled by removing jumper plug #2 on the Q-68 board.

SYSTEM TIMING

The 68088 is clocked by the Rpple II's internal 7.16

&=

Megahertz clock. Depending on whether or not the 68008 is
accessing its "own" (not Apple's) memory or not, the 6582
processor in the Apple II runs at two different speeds:

When the 68008 accesses memory in the Apple II memory
space (the bottom 64K), the Apple's 65062 runs at half
speed.

When the 68¢08 accesses memory outside of the bottom
64k, the Apple's 6502 runs at full speed.

There is a simple way to gauge how much of the 6502's
processing time is being "robbed" by the 68008. Simply hit
"CTRL~-G" to sound the Apple's beep. 1If the familiar high
pitch beep is heard, the 680608 is not using any Apple II
memory. If the pitch is lower, the 68008 is getting into
the Apple memory at least some of the time. 1If the beep is
an octave lower than normal, the 68008 is running
continuously out of the Apple II memory.

As for the 680¢8, it too runs approximately twice as fast
when running out of its own memory than when running out of
the Apple I1's memory.

Two simple programs on the supplied demonstration disk show
this speed difference. After loading the Macro Assembler,
type "LOAD VIDEOTEST" (follow all commands with a RETURN).
To see the program, type LIST. This program continuously
increments all values in the Apple HIRES screen. Now type
ASM (assemble), and when the assembly is finished, type
QON. The HIRES screen should cycle continuously.

Now hit CTRL-G and listen to the tone. Hear the difference?
The tone is an octave lower than normal, because the Apple's
6502 and the Q-68 are running simultaneously.

Take a look at the screen and get a rough idea of how fast
the display is changing.

Now stop the 680088 by hitting RESET on the Apple.

Next, type LOAD MEMOVE. If you LIST this program, you'll
see the VIDEOTEST program, with a section of code added to
the beginning, This added code moves the entire VIDEOTEST
program into the 68008's onboard RAM, and then jumps to it.
The program is thus identical to the VIDEOTEST program, but
it runs outside of the Apple memory.

Type ASM, then QON. See the difference on the screen? The
display really moves now. Now type CTRL-G and listen.

There's the familiar tone, but higher than when you ran
VIDEOTEST. If you have a sharp ear, you might notice that
it still is not as high in pitch as the normal Apple beep.
This is because MOST of the 68008 memory accesses are coming
out of the onboard RAM (remember, this is where the program
was moved to). But every time the Apple's HIRES video
screen is accessed, the Apple shifts to half speed.

Before, in the VIDEOTEST program, all memory used by the
68008 was in the Apple. The program executed out of Apple
memory, and the video "writes" were made to Apple memory.

In MEMOVE, the program part is moved out of Apple memory and
into the Q-68 board RAM. So the pitch of the Apple's beep
is lowered only by the proportion of the program executicn
time that the 68008 uses Apple memory. This happens for
video memory updates only,

If the 680@8 uses none of the Apple memory, both the 6582
and the 680088 run at full speed (1 Megahertz for the 6502;
7.16 Mhz for the 65008).

MORE USES FOR Q-68 MEMORY

The RAM on the (-68 card can be used to move programs out of
the Apple memory space for faster execution, as demonstrated
above. Two other uses are recommended for the Q-68 RAM.

If you wish to do stack operations with your 680#8 program,
you need to locate the 680068 stack scmewhere in memory. The
perfect place for it is in the Q-68 RAM, since it does not
get in the way of any Apple II code, and stack operations
execute quicker here than out of the Apple memory.

you are using DEBUG, you can use the top two pages of
58 Board RAM for anything you wish., These two pages are
addresses $1850¢-5187FF. A good place to put a stack
would be $188006. The stack works downward in memory as it
is pushed; upward when popped. DEBUG places its internal
stack at $18643.

Your 68068 program will probably use "scratch" locations to
store variables. The Q-68 board RAM is a gocd place to put
them,

.t you don't need DEBUG, the (Q-68 EPRCM can be used to store
youy "final® routines in permanent form. Again the two

"onboard" advantages are realized--faster execution and
noninterference with Apple programs.

0-68 BOARD USER OPTIONS

There is a three position jumper block (marked "TB1") on the
upper right corner of the Q-68 board. The board is shipped
with little jumper plugs at positions #2 and #3. This
section explains the purpose of these jumpers.

Jumper position #1 disables access to the Apple memory if a
jumper plug is installed. This is provided for service
reasons., Chapter 5 describes a test technique which
involves temporarily installing a shorting plug at this
first position. For normal operation, jumper #1 should be
left open (no shorting plug).

Jumper #2 connects the watchdog timer to the 68008 BERR (Bus
Error) input. 1Its shorting plug should be left in place for
normal operation. If you wish to deactivate the watchdog
timer, remove the jumper. But remember that any attempted
access to nonexistent memory will hang up the system if
jumper #2 is not there.

Jumper #3 maps the Q-68 board for operation in the QPAK-68
system. The jumper plug should be in place for normal
operation. Removing this jumper plug swaps the Apple II
memory space with the onboard ROM/RAM. Without jumper #3,
the onboard ROM occupies locations $S@@@@0-SOFFFF, and the
Apple memory occupies $10000¢-$1FFFF. Why do this?

There is a short diagnostic routine at the beginning of the
onboard EPROM. If you are trying to isolate a fault in the
Q-68 board, and there is a problem in the Apple bus timing,
you will never be able to start up the board because the
RESET vectors are in the Apple RAM. So this jumper allows
you to fire up the system without access to the Apple Bus,
and run the diagnostic program out of EPROM.

Another reason, which might be used for a special
application, is to allow the board to run without using any
Apple memory. You could code a custom routine into the
onboard EPROM, and by removing the third jumper start up the
68008 using the EPROM rather than the Apple memory.

X1-X2 JUMPER

The 28-pin socket at location "C2" has a 24-pin IC
installed. This is the Q-68 board's 2 kilobyte RAM.

This socket will also accept an 8 Kilobyte RAM (Hitachi
HM6264~15 or equivalent). If this part is installed, the
jumper at X1 must be cut, and the jumper at X2 must be
connected.

X3-X4 JUMPER

The 28-pin socket at location "B2" accepts a 2764 or 27128
EPROM (Intel compatible) with no alterations. The socket
can also accept a 27256 (Intel compatible) or ROM equivalent
by cutting X3 and bridging X4.

EXPANDING THE Q-68 BOARD

All signals required for 68008 expansion are available on a
50-pin connector at the top of the Q-68 board. These
signals include the 208-bit address bus, the 8-bit data bus,
and control signals. The following table shows the pin
assignments for this connector.

NOTE: Signals with an asterisk are pulled up to +5 volts
through a 1000 ohm resistor.

1 A3 2 INTACK/
3 A4 4 A2

5 AS 6 Al

7 A6 8 AQ

9 a7 190 FCO

11 A8 12 FC1

13 * IPLO@-2/ 14 FC2

15 * IPL1l/ 16 A9

17 * BERR/ 18 AlfQ

19 * VPA/ 20 All

21 Al2 22 E

23 * RESET 24 Al3

25 * HALT/ 26 Al4

27 GND 28 GND

29 Al6 30 AlS

31 * BR 32 Al7

33 BG/ 34 E@000/
35 Al8 36 Watchdog Timer Output
37 R/W 38 Al9

39 DS/ 40 D7

41 * AS/ 42 D6

43 Do 44 D5

45 D1l 46 D4

47 D2 48 * DTACK
49 D3 50 N.C.

NOTE: The following signals are not direct 68008 signals:

1. E@PGQ/. This is an address decode of SE@@@@-SEFFFF,
conditioned by AS/.

2. Watchdog Timer Output. This is the output of a
divide-by-256 counter which is clocked by the 68008
"E-clock" and reset by DTACK/ going high.

3, INTACK/. This is the NAND'ed combination of FC®, FC1,
and FC2.

Signals shown with a "/" are active low.

The six 68068 input signals IPL@-2/, IPL1/, VPA/, RESET/,
HALT/, and BERR/ are driven by Q-68 board open-collector
drivers and 1K pullup resistors. This allows external
circuitry to share these 68008 pins.

POWER CONSUMPTION AND FANS

The Q-68 board is specified to use 400 milliamps (max) at 5
volts. The 5 volt supply is the only one used by the
board.

The Apple I1 manual says that 508 milliamps (1/2 Amp) of 5
volt power is available for all of the expansion slots
combined. We have found this spec to be extremely :
conservative. Most Apple II's that we've seen (including
ours) are well stuffed with peripheral cards--disk
controller, printer cards, serial cards, 808 column cards,
etc. A four or five card complement of peripheral cards can
easily consume upwards of 2 Amps, and run without problems,

We've found that the real worry is not current ccnsumption,
but HEAT.

Beyond about three or more peripheral cards, you shculd get
a fan for your Apple 1I. Many are available at computer
stores, from simple adhesive foam installation types (with
on-the~cord lamp type power switches) to side mounted units
which contain power line filters and convenience power
outlets. These side units are highly recommended.

By the way, if you touch the 68008 on the Q-68 board, you'll
feel where most of the board's power is consumed. The 68088
runs very hot. Don't worry, this is normal--the 68068 is
specified to 70 degree Centigrade operation.

nanor/
Assembler

BqUIASSY
/103pH

Chapter 3 -~ THE MACRO ASSEMBLER

Section 3.1 ~-- INTRODUCTION

THE MACRO ASSEMBLER

The Editor/Assembler provided with the QPAK-68 is written by
5-C Software Corporation. It is a powerful macro assembler,
which runs under the Apple II Disk Operating System,

We refer to the S-C package as the "MACRO Assembler"
throughout this manual. To be technically correct, it is
actually an EDITOR/Macro Assembler. The EDITOR program is
built into the package. This is one of the best features of
the 5-C program. You don't need to shuttle diskettes back
and forth as you load an EDITOR program, edit, save source,
load ASSEMBLER, assemble, discover errors, reload EDITOR,
etc,

The whole edit/assemble package is in memory all at once, so
it takes you exactly zero time to move between the edit and
assemble modes.

To further speed up the edit/assembly process, the S-C
assembler allows your source and object files to be in
memory at the same time. This means that for a reasonable
size program, there are absolutely no disk accesses
required. The source is read from memory, the assembler
runs from memory, and the object code is stored in memory.
Quickly!

To speed things up even further, you can tell the assembler
to not list the program on the Apple screen as it

assembles, Believe it or not, the screen writing takes most
of the time in the assembly process.

How large a program can be handled without using the disk?
You can fit about 8 kilobytes of object code, along with its
accompanying source, in memory and still run the "all-RAM"
system (language card/Ile version).

If your programs are longer, don't worry. The assembler
allows you to load source code in sections from disk, and to
store object code back to disk.

THE EDITOR

The EDITOR portion of the assembler allows you to type in

and edit source programs in preparation for assembly by the

Macro Assembler.

There are numerous functions in the Editor which are
tailored for efficient source program entry. Some of the
are:

1. Line numbers. These make inserting and deleting of
program lines easy. The line numbers are implemented

se

much as in BASIC. You can insert, delete, and renumber

program lines.

2. Automatic line numbering. Hitting CONTROL-I generate
the next line number for you. The actual "next line"
number chosen depends on what you have selected as th
increment. You can override this by typing in the lin
number yourself,

3. An EDIT command. This allows you to edit characters
within a line.

4. Search and Replace functions. These automatically
search for a character string which you specify. Onc
found, you can replace the string with another one.
can choose to do the whole listing automatically, or
search only a line or group of lines,

5. A COPY command. This lets you rearrange your code.
line or group of lines can be copied to anywhere in y
program.

S

e
e

e
You

A

our

Section 3.2 -- 68000 Assembler Syntax

The opcode and register syntax are taken from the Motorola
68000 User's manual. Before delving into the detailed
workings of the assembler, we'll present a general overview
of how the Macro Assembler handles 68008 program code.

ADDRESS MODES

The addressing modes and assembler syntax are shown below.
An or Dn specifies a register, where n is a digit from ¢ to
7; "num" represents a number, label, or expression; and "d"
is a displacement.

Dn Data register direct

An Address register direct
(An) Address register indirect
(An) + Address register indirect

with post-increment

- (An) Address register indirect
with pre-decrement

d(An) Address register indirect with
displacement

d(An,An) or Address register indirect with index and

d(An,Dn) displacement

num Absolute short or Absolute long number

(see below)

<num Absolute short number (16 bit)

>num Absolute long number (32 bit)

d (PC) PC relative

d(pPC,An) or PC relative with index and displacement
d (pC,Dn)

#num Immediate

ABSOLUTE ADDRESS MODES

In the absolute address modes, either 16~-bit or 32-bit
addresses may be forced by preceding the address expression
with "<" or ">", 1If neither is present, the assembler must
decide which size to use.

If you do not specify the address size, the assembler tries
to select the most reasonable size. There are three factors
considered in deciding which size to use: the current
assembly address (program counter), whether or not the
address expression involves a forward reference, and the
actual value of the address expression.

1f the address expression is defined before it is
encountered and it has a value in the range $000000-SQU7FFF
or SFF80@J-SFFFFFF, the assembler uses the 16 bit mode.

If the address expression has not yet been defined (it is
defined in a forward reference), and the program counter is
in the range for a 16-bit address, the 16 bit mode is used.
If the address expression value is not in the range of a 16
bit value after forward references are resclved, a RANGE
ERROR is generated. To assemble under these conditions, use
the ">" prefix to force 32-bit mode.

If this seems a bit mysterious, take a look at the
discussion of SIZES in Chapter 8. Also take a look at
“"Gotcha #1" in Chapter 9.

PC RELATIVE MODE

The program counter relative modes must have PC as the first
register. The Kane book says it may be omitted in the
simple indexed form, i.e. d(An} instead of 4{(PC,An). This
will not work. The "PC" is necessary for the assembler to
distinguish this mode from the 4{(An) mode.

The expression, "d" is an actual address, or a label
corresponding to an address. The assembler subtracts the
current value of the program counter from the d-expression
to get a displacement. Do not try to specify "d" directly
as a displacement., For example, do not write:

ADD TABLE-*(PC) ,D3

Instead, write:

ADD TABLE (PC) ,D3

68000 EXTENSIONS

Many opcodes allow an extension specifying the length (byte,
word, or long) of the data. 1If no length is specified, a 16
bit word size is assumed. An extension consists of a period
immediately following the opcode (No SPACES here) and the
letter "B", "W", "L", or "S". The "S" is used for short
branches only.

The opcodes which allow an extension are:

ADD ADDA ADDQ ADDI ADDX

AND ANDI ASL reg ASR reg CLR

CMP CMPI CMPM EOR EORI

EXT LSL reg LSR reg MOVE MOVEA
MOVEM MOVEP NEG NEGX NOT

OR ORI ROL reg ROR reg ROLX reg
ROXR reg SUB SUBA SUBQ SUBI
SUBX TST Bcec

All other opcodes may not have an extension.

Note that ANDI, EORI, MOVE, and ORI, when used with the
registers CCR, SP, or USP, do not need an extension.

In the indexed addressing modes, the second register (An or
Dn) may have a .W or .L extension. This specifies the data
length to use from the register. If you specify the .W
extension, the 16 bit data is sign extended before adding.

MOVE $34 (A3,A5.W), (A4) +
Here the source address is formed by adding the 32 bit
contents of A3, the sign extended 16 bit contents of A5, and
the 32 bit value $34,

Relative branch size is indicated by the suffix ".s" or
".L". ".s" after the opcode forces a short (8-bit)

displacement, ".L" forces a long (1l6-bit) displacement.

If neither is present and the branch is to a previous
location, either the 8~ or l6é-bit displacement is picked by
the assembler, as needed. However, if the branch is to a
forward location, a 16-bit displacement is assumed. You can
override this with the ".S" extension., This will provide a
short branch to a forward reference. Note that only BRA,
BSR, and Bcc use an extension. The DBcc instruction always
uses a 16-bit displacement.

CONDITIONAL BRANCH INSTRUCTIONS

The conditions for use with Bcc, DBcc, and Scc are as
follows:

HI high

LS low ox same

cc carry clear

Cs carry set

HS high or same (same as CC)
LO low {(same as CS8S)
NE not equal

EQ equal

Ve overflow clear

VES overflow set

PL plus

MI minus

GE greater or equal
LT less than

GT greater than

LE less than or equal

In addition, the following may also be used with DBcc and
Sccs

T true
E false
RA same as false, used for DBRA

MISCELLANEOUS NCGTES

Although some instructions, like ADRD, have different forms
(ADL, ADDA, ADDO and ADD1}, you don't always have to specify

the A, Q, or I at the end. The assembler is smart enough to
do this for you. For example, if you write the instruction

ADD p1l,AS
the assembler converts it to
ADDA p1,AS5

This works for ADD, AND, CMP, EOR, MOVE (converts only to
MOVEA, not MOVEQ), OR, and SUB.

If the instruction has a Quick Immediate form (ADDQ, SUBQ),
the assembler automatically uses that form if the operand is
immediate and has a value from 1 through 8. 1If it is out of
this range, the regular (longer) Immediate form is used.

The immediate form can be forced by using ADDI, SUBI, etc.
The Quick mode cannot be used if the data is cut of range.

When in doubt, use the I, Q, A, or whatever at the end.
NOTE: ABCD, ADDX, MOVEP, MOVEM, MOVEQ, SBCD, and SUBX must
have the specified last letter at the end.

68000 instructions must start on a word boundary (at an even
address). If an instruction does not, the assembler gives
an error. This is most likely to occur after a memory area
that contains byte-size data. Note that byte data can be
placed anywhere, but word and long word data must also start
on a word boundary. This is not checked by the assembler.

If you get this error, check the preceding lines of your
code. There will probably be a data area there. Just put a
.BS 1 or a .DA #0 after the byte data to force the program
counter back to an even address.

When using the MOVE, OR, AND or EOR instructions to change
the status register, the assembler sizes the data depending
on whether you use CCR or SR as the destination. If "SR"
is used, the assembler uses word size; if "CCR"™ is used the
assembler uses byte size. The assembler does not accept
size extensions (".B"™ or ".W") in these cases.

Lt

@

Section 3.3 - - TUTORIAL

In this section, we'll go step-by-step through the process
of writing a small program with the Macro Assembler.

ENTERING A PROGRAM
First start the Macro Assembler by booting the QPAK-68
system disk, and selecting menu item 3 or 4.

Then type in the following short program. Use the line of
periods to help gauge where to put spaces.

If you make a mistake, simply retype the line. As in BASIC,

retyping a line replaces the previous line of the same line
number .

D R I I I R R I I R S S P A A A I I I S A

1000 .OR $1000

101¢ TIME .EQ $100

1020 *

103¢ START MOVE.W #TIME,D4

1040 BEEP TST.B SCo30 7 SPKR
1959 MOVE.W D4,D5 NEW TC
1068 PERIOD DBF D5, PERIOD

107@ DBF D4 ,BEEP

1089 BRA START

1699 *

1100 .OR $800

1110 .DA $8000

1120 .DA $1009

NOTE: All commands in this manual such as "LIST" are
enclosed in quotes. Do not include the quotes when you type
them.

Now type "LIST" to see the program as the computer has it.
The display should look like this:

tLIST

1000 .OR $100¢

1610 TIME .EQ $100

1629 *

1036 START MOVE.W #TIME,D4

1046 BEEP TST.B $C0e30 ; SPKR
1059 MOVE.W D4,D5 NEW TC
1068 PERIOD DBF D5, PERIOD

1670 DBF D4 ,BEEP

1080 BRA START

1090 *

1100 .OR $800

1110 .DA $800¢

1120 .DA $1000

This listing is called a source program. It is the text
form of an assembly language program, Later we will go
through the steps necessary to convert it to a form which
can be executed by the Q-68 board, but for now let's observe
what the source form looks like.

The first column contains line numbers. These are always
4-digit numbers. Assembler line numbers work just like
BASIC line numbers for editing, inserting and deleting
lines.

The second column contains labels or an "*" to indicate a
comment. There are two kinds of labels, memory markers and
variables.

The labels START, BEEP and PERIOD are used to direct program
flow. Line number 108¢, for example, says to branch to the
label START, which has been defined in line 163@. The label
START actually corresponds to the memory location which
holds the instruction "MOVE.W #TIME,D4".

You might be tempted to write line 1080 as
1086 BRA 1030

thinking that the target is line number 1038, Not sol
Remember that line numbers are used only for editing,
inserting and deleting program lines. Never try to
reference them in your scurce program code.

The second kind of label is a variable name. In line 141¢,
the variable TIME is set to the number $100, using the .EQ
{equate) directive. BAny time the assembler sees the word

[

-19

TIME, as in line 103¢, it will substitute the number $10d.

The third column contains opcodes (OPeration codes). These
are either standard 6880¢ instructions, or special
"directives" to the Macro Assembler. In our example, the
instructions MOVE.W, TST.B, DBF and BRA are used. The
directives, identified by two letters preceded by a period,
are .OR, .EQ, and .DA.

The fourth column contains operands. Operands further
define the action of the opcode. The operand can contain a
number, a label, or an arithmetic expression. A few
instructions, such as NOP (no operation), do not require an
operand.

The fifth column is used for comments. Comments are used to
add clarity to your assembly listing. The assembler
requires at least one space before the comment to set it
apart from the end of the operand field. Some assemblers
require a semicolon before a comment. As line 1040 shows,
you can use semicolons if you wish. As line 1650 shows,
however, they are not required.

Lines 1020 and 1099 are comment lines with only an asterisk
in the left margin. These are used to separate blocks of
code and produce a neater listing.

SAVING A SOURCE PROGRAM ON DISK:

To save the program on your disk, type "SAVE NOISY". This
is a standard DOS SAVE command, just like you would use in
BASIC,

When you look at one of these saved files using the DOS
CATALOG command, you'll notice that they are flagged as "I"
files, which signifies Integer BASIC programs. They are
only marked this way--they are not actually BASIC programs.
They are 68080 source programs, and cannot be run by Integer
BASIC,

NOTE: You do NOT need Integer BASIC in your Apple to use
the Macro Assembler.

To clear memory for a new program type "NEW". Now type
"LIST" to verify that nothing is there. To reload the
program from disk type "LOAD NOISY". Now type "LIST" and
you'll see your program back in Apple memory.

ASSEMBLING A SOCURCE PROGRAM:

A program must be assembled into binary form before it can
be executed. The command to assemble a program is "“ASM".
Try it now....

Our program is now assembled into memory starting at address
$1009.

If you are using a 40 column screen, the display should look
like this:

:ASM

1000 .OR

$1000
¢0000100- 101¢ TIME .EQ
$169

1920 *
¢0001090- 383C G100 1038 START MOVE.W
#TIME, D4
PP001004- 4A39 GOOO
¢000100¢8- CP30 104¢ BEEP TST.B
$Co30 : SPKR
$000100A- 3A04 1050 MOVE.W
D4,D5 NEW TC
@0P@1lPdC- 51CD FFFE 1068 PERIOD DBF
D5, PERIOD
¢0001010- 51CC FFF2 1076 DBF
D4,BEEP
P0P@d1014- 60EA 108¢ BRA
START

1090 *

1160 .OR
$800
¢0000800- 0000 8000 1110 .DA
$8000
g0000804- 0000 1000 1120 .DA
$1000

SYMBOL TABLE

p@0@1404- BEEP
@@00108C~- PERIOD
000010009~ START
@0000100- TIME

@99@ ERRORS IN ASSEMBLY

If you are using an 8@ column screen, the display should
look like this:

:ASM

1000 .OR Sle00
000060100~ 1010 TIME -EQ $100
1920 *

000010006~ 383C 0160 1030 START MOVE.W #TIME,D4
00001004~ 4A39 0000

000010608~ CO30 1340 BEEP TST.B SCo30 i SPKR
00001006A- 3n04 1058 MOVE.W D4,D5 NEW TC
¢@d00100C~ 51CD FFFE 1060 PERIOD DBF D5, PERIOD
00001616~ 51CC FFF2 1070 DBF D4 ,BEEP
00001014~ 6QEA 10486 BRA START

1090 *

1100 .OR $800
0@0Qga800~ 0000 8000 1110 .DA $8000
00000804~ 0000 1000 1120 .DA $1000

SYMBOL TABLE

00001004~ BEEP
@006108C~ PERIOD
00001006~ START
00008100~ TIME

0003 ERRORS IN ASSEMBLY

Notice that two more columns have been added to the left of
those we saw when we typed “LIST". The first new column
contains the memory addresses (in hexadecimal) into which
the program was loaded as it was assembled. The second
column shows the numbers (in hexidecimal) which occupy the
memory locations.

The Symbol Table is a list of all the labels and the values
assigned to them.

The program is now in memory in two forms. The source
program is there, right beneath DOS (starting at $9600, and
working downward in memeory). The executable form, called
the "object" program, is in memory from $106¢ through
$1815. There is alsc a small section of code at S84
through $8¢7. This is initialization information reguired
by the 58008,

EXECUTING THE OBJECT PROGRAM:

To run the program, type "QON", (return). Do you hear "zip"
sounds coming from your Apple speaker? The sound is
produced by continually toggling the Apple speaker by
addressing location $C@30.

Congratulations! You've just written, assembled, and
executed your first 68600 program! As soon as you dget tired
of the noise, hit the RESET key. This turns off the Q-68
board and re-enters the Assembler. (If you have an old
version of the F8 ROM, RESET will return you to the Apple
monitor. Type "3D@G" to return to the Macro Assembler.)

Now we have walked through the entry, assembly, and
execution of a very small program. You'll use exactly the
same steps for a large program. In addition, there are
other features built into the Macro Assembler which simplify
the process you just went through. To take a look at some
of these, let's modify the basic NOISY program,

MODIFYING A SOURCE PROGRAM:

First type "LIST", and look over your program.

Let's modify one line of the program to produce a different
sound. Type the following line:

1018 TIME .EQ 580
This replaces the line 1010 that was there before.

Now type "ASM", to create the new version of your program in
executable (object) form. And execute it, by typing "QON".
Hear the difference?

You changed line 10¢1¢ the hard way, by retyping the whole
line. A line edit command is available to allow you to
change only part of a line and leave the rest alone. Type
"control-E" for EDIT. The word "EDIT" appears, with the
flashing cursor next to it. Type in the line you wish to
edit, 1016, and (return).

Now you see line 1010, with the cursor positioned over the

first letter of the line. The left and right arrow keys
move the cursor over the line. When you reach the part you
want to change, simply type in the new information. The
line will be accepted exactly as it appears on the screen,
S0 be sure you wipe out all unwanted letters by typing a
space over them,

EASIER ENTRY OF SOURCE PROGRAMS:

Now let's try an easier way to enter source lines. First
save the latest version of ycur program on a disk by typing
SAVE NOISY again. Then type "NEW" to erase the source
program from memory. (It is still on the disk).

Now hold down the CTRL key (“CTRL" means "control"), and
type the letter I. We call that typing "contrel-I". Look
at the screen. You will see that the Apple printed "106¢",
and the cursor is blinking after that., Type "control-1I"
again, and you will see the cursor move over about 7
character positions.

Whenever you type "control-I" inside a line (beyond the left
margin), the cursor moves to the next tab stop. Play with
this a little, and you will find that the tab stops line up
nicely with the scurce program column format,

After entering a line and typing RETURN, the next CTRL-I
automatically generates the next line number for you.

Why don't you try typing in the NCISY program again, with
the help of the "control-I" key? You'll find that mastering
the "control-I" function will save you a lot of time when
you write and edit programs.

Start by typing "NEW", tc insure that there are no stray
program lines left over from some previous work.

Then type in the program again, this time using the CTRL-I
key to generate the line numbers, Type "ASW® in, and
"QON". The program should work just 1like it did the first
time. Stop it by pressing "BESET".

With thisg brief intreoduction, vou should now bs ready to
dive into the followi chapters. 58 youo siudy each new
Com i or feature, iment with it you really
understand what 1s happening.

iy

Section 3.4 -- SOURCE PROGRAMS

Source programs are entered a line at a time, with a line
number identifying each line. The line numbers run from @
through 9999. The automatic line numbering and the RENUMBER
command use default line numbers from 16@0¢ through 9999,
Source program lines are kept sorted in line-number order.
The numbers are used for editing purposes, just as in

BASIC.

A blank must always follow the line number. After the blank
there are four fields of information: the label, opcode,
operand, and comment fields., Fields must be separated by at
least one blank. Lines may be up to 248 characters long.

AUTOMATIC LINE NUMBERING

You may type the line number yourself, or use the two means
for automatic line number generation.

The first method is really semi-automatic, because you type
a control-I to get the next line number. BAny time the
cursor is at the beginning of a line (right after the
prompting colon), typing control-I causes the next line
number to be generated.

Immediately after loading the Macro Assembler or typing
“NEW", the first line number generated is 100¢. The number
is displayed as four digits and a blank. The cursor is then
in position for the first character of a label, or the
asterisk denoting a comment line. If you type the control-I
in any other position than the beginning of a line, it
causes a tab to the next tab stop.

The second method is invoked by typing the "AUTO" command,
with or without a starting line number. 1In the "AUTO" mode,
the next line number is automatically generated at the
beginning of every line. 1If you don't want to use the line
number, or want one out of sequence, you can backspace to
the colon prompt and type a new line number or command. The
"AUTO" mode is terminated by the MANUAL command, by hitting
"RESET", or by any error message.

The next line number is the value of the previous line
number plus the current increment. The standard increment
is 16, but you can change it to any integer value with the

INCREMENT command.

BUILT-IN TAB STOPS

Although the opcode, operand, and comment fields are not
required to begin in any particular column, it is neater to
align them. Therefore, tab stops are included in the Macro
Assembler at columns 14, 22, 27, and 32.

Control-I is the tab command used by the Macro Assembler.
Normally control-I generates enough spaces to move the
cursor to the next tab stop. If control-I is typed at the
beginning of a line, the next line number and one space is
generated. If you are already past or at the last tab stop,
control-I generates a single space.

Some printer interface cards with firmware drivers use
control-I for setting various modes. If you wish to change
the tab character to avoid interfering with such a card, you
may do so. The ASCII code for the tab character is stored
at location $D@@F. An alternative is to change the printer
interface control character, which is usually stored at
S@6F8+slot#.

Space is reserved inside the Macro Assembler for a total of
five tab stops. They are stored in locations $D@1¢ through
$D@14, as column numbers, You may change them if you wish,
If you want fewer than five tab stops, set the remaining
ones to zero.

For the $3000 (no language card) version of the Macro
Assembler, the tab character code is at $360F, and the tab
stops are at $3010-$3014.

LABEL FIELD:

The label field may be left blank, or may contain a label.
There are three types of labels used in the Macro
Assembler: normal labels, local labels, and private
labels. The first character of the label must be in the
sacond column after the line number.

1900 START.HERE (normal! label)
1916 .23 (local label)

1020 :12 (private label)

You may not use a label which corresponds to one

of the 68000 register names. These "reserved" labels are
D@, bl, p2, p3, D4, DS, D6, D7, Bn@, Al, A2, A3, A4, A5, A6,
A7, CCR, SR, USP and PC.

Normal Labels: Used to name places in your program to

which you will branch, as well as constants and variables.
Normal labels may be up to 32 characters long. The first
character must be a letter. Subsequent characters may be
letters, digits, or the period character ("."). The period
is useful for making long labels readable. For example, a
subroutine to extract the next character from a buffer might
be named, "GET.NEXT.CHAR.FROM.BUFFER".

The standard tab stops assume your labels will be six or
fewer characters long. However, since the assembler is
relatively free-format, you may type any length label
followed by a blank and the opcode, operand, and comment
fields, Or, if you wish, you may type the long label on a
line all by itself. 1In this form, the label is assigned the
current value of the location counter, just as if you had
appended ".EQ *" to the line.

1008 .OR $1000

1010 *

102@ SOURCE.POINTER .EQ $4¢
1638 DESTIN.POINTER .EQ $44
1049 TRANSFER.COUNT .EQ $48

1850 *

106¢ TRANSFER.BLOCK,.OF.LONG.WORDS
1070 MOVE.L SOURCE.POINTER,Al
1089 MOVE.L DESTIN.POINTER,A2
1099 MOVE.W TRANSFER.COUNT,D®
1169 LoOP MOVE.L (Al)+, (A2)+

1110 DBF D@, LOOP

Local Labels: Used to name branch points within a module.
The main purpose for local labels is to make programs more
readable by reducing the number of label names you must
invent, As a side effect, local labels save considerable
space in the symbol table during assembly; they only require
two bytes each. The use of local labels also encourages
structured programming habits.

Local labels have a period as the first character, followed
by one or two digits., Any label from ".@" through ".99" may
be used. (Please note that these are label names, not

decimal fractions. Consequently, the label “.1" is treated
as exactly equivalent to the label ™.@1"; in fact, it will
be listed in the symbol table listing as *“.@01".)

A local label's location is internally defined as a distance
from a normal label which precedes it in the source program.
(There must be one before it, or you will get an error
message.) The local label must be no more than 255 bytes
away from a preceding normal label,

Since each set of local labels is associated with a
particular normal label, you may re-use the same local
labels as often as you wish.

Here are two routines within the same code segment which use
the local labels ".1" and ".2" twice. This is perfectly
acceptable because of the intervening normal label,
"ANOTHER.NORMAL.LABEL".

1000 .OR $1000
1002 *
1905 NORMAL.LABEL
1006 *
19182 CLR D@
1920 .1 MOVE #32006,70
1930 MOVE $#510949,D1
1640 .2 MOVE D@, (AQ) +
1958 DBEQ Dl,.2
1060 BRA .1
197¢ *
2993 ANOTHER.NORMAL.LABEL
2002 *
201¢ MOVE $#5109,04
2020 .1 TST.B $C@39
20308 MOVE D4,D5
2048 .2 DBF D5,.2
2059 DBF D4,.1
2069 RTS

The assembly listing shows how theses local labels are

represented in the symbel table:

tASM
14¢0 LOR 51008
1082 *
1895 NORMAL.LABEL
1606 *
Bo001000~ 424¢ 181¢@ CLR Dg
gogargg2- 307C 2006 1828 .1 MOVE $52008,4848

00001006~ 323C 1000 1030 MOVE #$1009,D1

0000100A- 30CO 1040 .2 MOVE D@, (AQ)+
p@0@1@aC~- 57C9 FFFC 1050 DBEQ D1,.2
90001010~ 60F0Q 1060 BRA .1

197@ *

2000 ANOTHER.NORMAL.LABEL

2002 *
00001012~ 383C @100 2010 MOVE #5109 ,D4
00001616~ 4A39 Q000
0099101A- CO30 2020 .1 TST.B $Co3¢e
geg0191C- 3a04 2039 MOVE D4,D5
000P191E- 51CD FFFE 2040 .2 DBF D5,.2
000010622~ 51CC FFF2 2050 DBF D4,.1
00001626~ 4ET75 2060 RTS

SYMBOL TABLE

¢9001912- ANOTHER.NORMAL.LABEL
.01=00001016,.02=0000101E
09001000- NORMAL.LABEL
.01=00001002,.02=0000100A

@090@ ERRORS IN ASSEMBLY

Private Labels: Used within macros as branch points.
Private Labels are maintained in a separate symbol table,
and hence do not interfere with either normal labels or
local labels. Each private label is associated with a
particular invocation of a macro, so that the assembler
treats the recurrence of the same label number as a unique
label. Private labels are discussed in more depth in
Section 3.8, on Macros,.

OPCODE FIELD:

The opcode field contains a machine language operation code,
a macro name, or an assembler directive. 1If you are using
the tab stops, the opcode field normally starts in column
14. However, opcodes may begin in any column after at least
one blank from a label or at least two blanks from a line
number,

The Macro Assembler uses the standard 680¢8 instruction
mnemonics as defined by Motorola. Macros and assembler
directives are discussed later in this chapter.

OPERAND FIELD:

The operand field further specifies the action of the opcode
field. This field may contain register expressions,
arithmetic expressions, variables, and constants in various
combinations,

Operand expressions have a range of 32 bits. This allows
for the 16 megabyte address range of the 68008, and for
32-bit constants. Although 6800¢ addresses are represented
by 24 bits, and 68008 addresses are represented by 20 bits,
the assembler accepts addresses of 32 bits without an
error. Future versions of the 68000 will probably be able
to use a full 32 bit address.

You may put as many spaces as you want between the opcode
and operand fields. However, there may not be any spaces in
the operand field. 1If there are two operands, they must be
separated by a comma.

The following program code demonstrates some operand
examples:

10060 .OR $1600

1010 *—mmm e e
doooved2~ 16206 TwO .EQ $2
¥e00ea06-~ 19306 SIX .EQ $6

1040 *~-m e mm e e
J@0d1000~ 2038 0008 1050 MOVE.L TWO+SIX,D@
000601004~ 223C 0000
0@oe1008~ 00@8 1660 MOVE.L #TWO+SIX,D1
0006160A~ 18F2 BO@15 10760 MOVE.B $15(A2,A3),(A4)+
JGO01LA0E- 4EA3 1089 TRAP #3

000061616~ 4E75 199¢ RTE

SYMBOL TABLE

9a00980806~ SIX
00006082~ TWO

In line 1400, the operand is the constant $100¢, a value for
the .OR directive. Lines 1028 and 103¢ define the variables
TWO and SI1X, and the operand field specifies the numeric
values of these variables.

The instruction at line 1650 says to move the data from
memory location 8 into data register D@. Location 8 is
defined as the sum of two variables, TWO and SIX.

The instruction at line 1060 says to move the number 8 into
data register D1.

Line 167¢ shows a fancy addressing mode provided by the
68000. Line 1080 contains the opcode TRAP, whose operand is
a number (#) from @ to $F. And finally, line 1090 contains
an instruction which does not require an operand, RTE
(Return From Exception).

COMMENT FIELD:

Comments are separated from the operand field by at least
one blank. Tab stops are set at columns 27 and 32 for the
comment field. 1In the assembly listing, tabbed comments
begin in column 51.

COMMENT LINES;

Full lines of comments may be entered by typing an asterisk
(*) in the first column of the label field, This kind of
comment is useful in separating various routines from each
other, and labelling their functions. It is analogous to
the REM statement in BASIC.

Lines which are completely blank are also treated as
comments,

ESCAPE-L:

A special comment line is built into the Macro Assembler.

If the cursor is one space to the right of a line number,
typing ESC-L generates a built-in comment line. This
consists of an asterisk (*) followed by a line of dashes
which just fill one line on the 40 column screen, The
comment line is commonly used to set off blocks of comments.

1f a comment line of dashes is not your favorite, you may
change the repeated character. The ASCII code of the
character is kept at $D@L5 ($3615). It is currently $AD,
which is ASCII for “-".

If you type ESC-L at the beginning of a line (before a line
number), it has a different meaning. In this case it causes
the first six characters of the line on the screen to be
changed to "LOAD"™. Then the rest of the line is read from
the screen, and issued as a LOAD command. With this feature
you can LOAD a file simply by typing CATALOG,

ESC-1,I,...1I,L

CURSOR CONTROLS:

The standard Apple I1 screen editing tools are supported by
the Macro Assembler. You can edit lines of assembly
language source in the same way that you edit lines in your
Integer BASIC or Applesoft program.

Whether or not you have the Autostart ROM, you may use the
new Apple standard cursor movement ccntrols: Escape-I, -J,
~K, and -M. The older Escape-A through Escape-F and
Escape-@ are also supported by the Macro Assembler.

Section 3.5 -- COMMANDS

You will use three types of commands in the Macro

Assembler: Assembler commands, DOS Commands, and Monitor
Commands. The Assembler Commands allow you to edit,
assemble, and execute your assembly language programs. Most
Apple Monitor and DOS commands are also recognized.

Commands are typed immediately after the prompt symbol,
which is a colon (:).

ASSEMBLER COMMANDS

There are 29 commands recognized by the Macro Assembler.
Assembler Commands may be abbreviated by typing the first
three letters. All of the letters of the command names you
do type are checked for spelling.

(Two DOS Commands, LOAD and SAVE, are used so frequently
that they might be thought of as Assembler commands.
However, they are DOS commands, and as such cannot be
abbreviated to the first three letters.)

The 29 Assembler Commands can be conveniently grouped into
source commands, editing commands, listing control commands,
68000 execution commands, object commands and miscellaneous
commands.

Group Commands

Source NEW, LOAD, SAVE, TEXT, HIDE, MERGE,
RESTORE

Editing EDIT, COPY, LIST, FIND, REPLACE,
DELETE, RENUMBER

Listing SLOW, FAST, PRT, (")

Execute 68000 QON, DBUG

Object ASM, MGO, VAL, SYMBOLS

Miscellaneous AUTO, MANUAL, INCREMENT, MEMORY, MNTR,
RST, USR

SOURCE COMMANDS: ..ceceeeeeeeeseess. NEW, LOAD, SAVE, TEXT,
HIDE, MERGE, RESTORE

NEW Command:

soeseessssscscsscesssss sNEW

Deletes the current source text from memory and restarts the
Macro Assembler. Clears the screen, writes "S-C MACRO
ASSEMBLER 680¢#¢ Vv1,0" on the top line, restarts the
automatic line numbering at 10600 and waits for you to type a
source line or another command.

LOAD Command: ..s.ceecsssssceacocseass $LOAD

:LOAD filename

Deletes the current source program (unless it is "hidden"
with the HIDE command), and then reads in a new one from
cassette tape., The LOAD command works exactly the same as
the load command in Integer BASIC or Applesoft.

If you type a filename after the LOARD command, it is
intercepted by DOS and a source program is loaded from disk
instead of tape.

s LOAD (Load from tape)
:LOAD BANANA (Load disk file named "BANANA")

SAVE Command:eceenssncscsonasse sSAVE
:SAVE filenamne

Writes the source program currently in memory to cassette
tape., It works exactly the same as the SAVE command in
Integer BASIC or Applesoft.

1f you type a filename after the SAVE command, it is
intercepted by DOS to write the source program on disk
rather than tape. A saved file appears in the disk
directory as a type "I" file.

:SAVE (save on tape)
¢:SAVE BANANA (save on disk file "BANANA")

TEXT Commandceeeecccsseeaceseess ITEXT filename
:TEXT# filename
tTEXT/ filename

Saves the source program to disk as a DOS text file, so it
can be edited with another text editor, There are three
forms of this command:

TEXT writes the lines with no line number. This is very
handy for building EXEC files for use with DOS, BASIC, or
any general use. Text files which are created this way can
be read back into the Macro Assembler by turning the AUTO
line numbers on (see AUTO command), and using the EXEC
command .

TEXT# writes lines with line numbers, exactly as they appear
on the screen. These files can be EXECed into Applesoft, or
back into the Macro Assembler.

TEXT/ writes the lines with a control-I in place of the line
number. You can keep disk files of often-used routines that
can be EXECed into a program wherever they are needed. The
control-I at the beginning of each line causes a line number
to be generated when the line is read by the Macro
Assembler,

:TEXT ROUTINE (writes the current source
program to a text file
named ROUTINE, with no line numbers)

:TEXT# ROUTINE (writes the current source
program to a text file
named ROUTINE, with line numbers)

:TEXT/ ROUTINE (writes the current source
program on a text file
named ROUTINE, with control-I's
in place of line numbers)

HIDE and MERGE Commands: :HIDE
:MERGE

These two commands, used together with the LOAD command,
allow you to join a program from disk or tape to a program
that is already in memory. To remind you that you are
HIDE-ing, the prompt symbol changes from “:" to "H:". After
HIDE-ing a program, you can LOAD another one from disk or
tape with the LOAD command., Then you type MERGE to join the
two programs together.

After this sequence of commands is executed, the program
which was already in memory follows the program just
LOADed. 1If the line numbers of the merged programs are nou
correct, you should use RENUMBER to assign new ones.

For example, suppose that we have two source programs on the
disk named "SRCONE" and "SRCTWO". We want to join them
together so that "SRCONE" precedes "SRCTWO". Here are the
two programs:

:LOAD SRCONE
:LIST

1ed9g * PROGRAM NUMBER ONE
1016 MAIN BSR SUBROUTINE
1629 RTS

:LOAD SRCTWO
sLIST

1006 * SUBROUTINE TO DO SOMETHING
101@ SUBROUTINE

1620 MOVE BLAH.BLAH.BLAH,DY
1336 MOVE D@ ,SOMEWHERE
10848 RTS

Now let’'s HIDE the source of SRCTWO, LOAD in the source from
SRCONE, and MERGE them together.

tHIDE

H:LIST (Note that nothing lists, because the
H:LOAD SRCONE source has been hidden).
H:LIST

1000 * PROGRAM NUMBER ONE
1010 MAIN BSR SUBROUTINE
1929 RTS

H:MERGE
tLIST

1000 * PROGRAM NUMBER ONE

1010 MAIN BSR SUBROUTINE

1029 RTS

1000 * SUBROUTINE TO DO SOMETHING
101¢ SUBROUTINE

1020 MOVE BLAH.BLAH.BLAH,D@
1039 MOVE D@, SOMEWHERE
1040 RTS

You can see that both programs are now in memory, but the
line numbers are not in sequence. RENUMBER fixes the line
numbers.

:RENUMBER
sLIST

1009 * PROGRAM NUMBER ONE

1601¢ MAIN BSR SUBROUTINE

1029 RTS

1639 * SUBROUTINE TO DO SOMETHING
1040 SUBROUTINE

105¢ MOVE BLAH.BLAH.BLAH,D®
1060 MOVE D@, SOMEWHERE
1079 RTS

RESTORE Commandecoeaveeseaecsess :RESTORE
Restores the root source program if an assembly is aborted
while inside an "included" module.

The "root source program" is the source program that is in
memory at the time you issue the ASM command. 1If this

source program uses the .IN directive to include additional
source files, it is possible that assembly might be aborted
while the "root" program is "hidden". An assembly may be
aborted either manually by typing the RETURN key while the
assembly is in progress, or automatically due to an error in
the source program.

If the assembly is aborted during the time that the root
program is hidden, the prompt character changes from ":" to
"I:". The RESTORE command resets the memory pointers so
that the included file is released, and the root program is
no longer hidden. The prompt character then changes back to

You do not have to use the RESTORE command after an aborted
assembly unless you wish to get back to the root source
program for editing purposes., 1If you type the ASM command,
the assembler automatically RESTOREs before starting the
assembly.

If an assembly aborts due to an error in a source line, you
may correct the source line, SAVE the module on the
appropriate file, and type ASM to restart the assembly.

EDITING COMMANDS ..¢eveveeessesessss LIST, FIND, EDIT, REPLACE
DELETE, RENUMBER, COPY

The editor in the Macro Assembler combines the Apple screen
editing features with a BASIC-like line editor. Source
programs are entered and edited in almost exactly the same
way you would enter and edit an Integer BASIC or Applesoft
program.

Editing commands allow you to list your source program,
delete lines, search for lines, replace portions of selected
lines, renumber lines, and copy blocks of lines from one
location to another. There is also a powerful EDIT command
which allows you to edit characters within a line.

RANGE PARAMETERS:

Most editing commands (LIST, FIND, EDIT, REPLACE, AND
DELETE) can use range parameters to operate on just part of
the program. A range parameter may be written with one or

two line numbers, or in most cases it may be omitted., If
there are two line numbers, separate them with a comma. If
‘there is only one line number, it may stand alone, or with a
comma; the comma may precede or follow the line number.

Each of these five possible arrangements has a specific
meaning:

(no number) Specifies the entire source program.
’ Specifies the entire source program,
Specifies line number #.

i Specifies lines from the beginning

of the source program through #.

%, Specifies lines from # through the
end of the source program.

#1,#%2 Specifies lines from #1 through #2.

Here are some specific examples:

tLIST (lists all lines)

:LIST 2000 (list line 2000 only)

:DEL 2000,300¢ (deletes lines from 2000-3000)

sEDIT 2004, (edits all lines from 206¢ through
the end of the program)

:FIND ,2000 (finds all lines from the beginning

of the program through line 2000)

You can also use a period (.) to mean "the last line
entered". The period, or "dot", is defined as the number of
the last line entered or deleted from the source program.

STRING PARAMETERS:

Some commands (LIST, FIND, EDIT, AND REPLACE) can also use a
search string parameter to operate only on lines containing
that string. The search string is of the form *string*,
where (*) is a delimiter of your choice. The delimiter can
be any printing character that does not occur in your search
string, except comma (,), period (.), or a digit (@-9).

Some examples:

tLIST /Ccout/ (lists all lines containing COUT)
sEDIT "“/DEST" (edits all lines containing /DEST)

You can use a wildcard character in search strings if you
want to operate on all lines containing partial matches to
your search string. The standard wildcard character is
control-W. You have to first type a control-0, and then a
control-W. The control-0 character is an override to allow
the insertion of control characters in commands and source
lines. The control-W appears on the screen in inverse
video. For example:

:FIND ?7ASWTA? (Pretend that the "W" is a control-W)
MOVE AS.DATA,D4

1120 MOVE AS.DATA,D6

1200 MOVE BASKETA,D2

LIST COMMAND: tveevsevoseccecaansses sLIST
:LIST range
sLIST *string*
sLIST *string* range

FIND COMMAND: (.eceveoocsscccsseceases sFIND
:FIND range
:FIND *string*
:FIND *string* range

Actually, FIND is just an alternate name for the LIST
command. Many people find it more natural to use LIST with
line number ranges and FIND with a search string, but either
command works with either parameter (or both parameters!j.

Both FIND and LIST list a single line, a range of lines, or
an entire source program. If you specify a search string,
only those lines which match the string are listed.

While a program or range of lines is listing, you can
momentarily stop the listing by hitting the space bar.
Tapping the space bar again restarts the listing. You can
abort the listing by hitting the RETURN key. The SLOW and
FAST commands allow you to control the listing speed. If

you list a single line, it is displayed on the screen in a
position which makes it easy to edit using the Apple screen
editing tools.

:LIST (list entire program)

tLIST 1238¢ (list only line 1230)

cLIST 1230,289¢0 (list lines 123@¢ through 2898)

:LIST 1234, (list all lines from 1236 through end)

tLIST ,12390 (list all lines from beginning through
12302)

tFIND /ASCII/ (list all lines containing the string
"ASCII")

ctFIND "BI",1200 (list all lines through 1260 that

contain the string "BI")

EDIT COMMAND:! ..ivoevscecevssscencssss SEDIT
tEDIT range
¢EDIT *string*
tEDIT *string* range

Allows easy editing of program lines. Since this command is
typed so frequently, a short form is provided. 1Instead of
typing "EDIT", you just type control-E, and the word, "EDIT"
magically appears on the screen. You fill in the line
number, and proceed to edit the line.

I1f you specify no range or string, the whole source program,
one line after another, is displayed for editing. 1If you
specify a range, those lines in the range are displayed for
editing. If you specify a search string, only those lines
matching the string are displayed.

EDIT displays a line for editing by printing the line,
clearing from the end of the line to the bottom of the
screen, and placing the cursor at the beginning of the label
field. You can edit the line with the following commands:

control-B Move cursor back to beginning of the
label field.

control-D Delete character under cursor.

control Fx Move cursor to next occurence of "x"
in line (if any). You may type any

character you wish for "x".

control-H Move cursor left.

(left arrow)

control-I Begin insertion mode; characters are
inserted until another control
character is typed.

control~L Store current edited line and start
editing the next line.

control-M Store the edited line. The complete line
(RETURN) is stored regardless of the cursor position.
control-N Move cursor to end of line.

control-0 Begin insertion mode, but allow next

character typed to be inserted even if
it is a control-character

control-Q Finish edit mode, chopping off all
characters from cursor to ehd of line.

control-R Restore the original line without
leaving edit-mode.

control-T Move cursor to next tab stop.
control-U (right arrow) Move cursor right.
control-X Abort the EDIT command.

control-@ Erase from cursor to end of line

without leaving edit-mode.

REPLACE :REPLACE *s-string*r-string*

COMMAND 3 :REPLACE *s-string*r-string* range
$REPLACE *s-string*r-string* options
:REPLACE *s-string*r-string* range options

NOTE: "s-string" stands for search string; “r-string" stands
for replacement string.

Searches for and replaces character strings in your source
code. REPLACE operates on all fields, from the first
character in the label field through the end of each line.
The search can include the entire program, or it can be
restricted to a range of line numbers by specifying which
lines are to be searched (range parameter).

When REPLACE finds your search string it prints the line
with the matching string shown in inverse videc. The
program then asks, "REPLACE?", and waits for you to type
"y", "N", or some other character. If you type "Y" the
corrected line is listed, and the search continues. 1I1f you
type "N" it simply continues searching. If you type some
other character, the REPLACE command terminates.

There are two options which may be selected by appending the
letters “A" or "U" to the command line. The letter "A"™ on
the end of the command line causes automatic operation,
without the prompting at each replacement. The letter "U"
means ignore the difference between upper and lower case
letters.

It is possible to replace more than one matching string in
the same source line.

You may use wildcard characters in the search string. The
entire matching string is replaced by the replacement
string. Do not put any wildcard characters in the
replacement string.

DELETE COMMAND: ..ccccceccccacanncns :DELETE range

Deletes a line or range of lines from your source program,
just as in BASIC. Another way to delete a single line is to
type its line number followed immediately by a RETURN, or by
a space and RETURN.

(Warning: DELETE followed by a file name is a DOS command.
This command will delete a file from your disk!)

DELETE must be followed by a range parameter and cannot have
a search string parameter.

:DEL (doesn't work)

*** SYNTAX ERROR

:DEL 12340 (delete only line 1239)

:DEL 1236,2890 (delete lines 123¢ through 2890)

:DEL 1239, (delete all lines from 1238 through
end)

:DEL ,1230 (delete all lines from beginning
through 123¢)

:DEL , (delete entire program)

RENUMBER COMMAND:ccce0c¢0.. :RENUMBER
:RENUMBER base
:RENUMBER base,inc
:RENUMBER base,inc,start

Renumbers all or part of the line. in your source program
with the specified starting line number and increment.
There are three optional parameters for specifying the line
number to assign the first renumbered line (base), the
increment, and the place in your program to begin
renumbering (start). There are four possible forms of the
command :

:REN Renumber the whole source program:
BASE=1000, INC=10, START=0

:REN # Renumber the whole source program:
BASE=#, INC=10, START=0

:REN #1,%2 Renumber the whole source program:
BASE=#1, INC=#2, START=0

:REN #1,#2,4#3 Renumber from line #3 through the
end: BASE=#1, INC=4#2, START=#3

The last form is useful for opening up a "hole" in the line
numbers for entering a new section of code.

sLIST

1000 * LITTLE RENUMBER EXAMPLE
1805 SAMPLE MOVE D4,D5
1946 MOVE D7,D2
1019 RTS

:RENUMBER

:LIST

1000 * LITTLE RENUMBER EXAMPLE
161¢ SAMPLE MOVE D4,D5S
1829 MOVE D7,D2
1339 RTS

:RENUMBER 100

sLIST

7109 * LITTLE RENUMBER EXAMPLE
0114 SAMPLE MOVE D4,D5
9129 MOVE D7,D2
9130 RTS

:RENUMBER 2004, 4

tLIST

2000 * LITTLE RENUMBER EXAMPLE
2004 SAMPLE MOVE D4,D5
2008 MOVE D7,D2
2012 RTS

:RENUMBER 3000,10,2008

:LIST
2000 * LITTLE RENUMBER EXAMPLE
2004 SAMPLE MOVE D4,D5
3000 MOVE D7,D2
3019 RTS

COPY COMMAND: svevevecscssoacecenses :COPY range, target

Copies a range of lines from one place in the program to
another. A copy of all the lines in the range specified is
placed just before the target line.

1f the target line does not exist, the lines within range
are copied where the target line should have been. If the
target is line 9999, and there is no line 9999, the copied
lines are placed at the end of the source program.

COPY does not delete the original section or renumber the
copy, so this command should be followed immediately by a
RENUMBER command.

SLIST

1000 * LITTLE COPY EXAMPLE
1995 SAMPLE MOVE D3,D4
1006 MOVE D7,D2
1010 RTS

:COPY 1005,10606,9999

:LIST

1609 * LITTLE COPY EXAMPLE
10@5 SAMPLE MOVE D3,D4
1006 MOVE D7,D2
1010 RTS

1005 SAMPLE MOVE D3,D4
1006 MOVE D7,D2
:RENUMBER

tLIST

1000 * LITTLE COPY EXAMPLE
1010 SAMPLE MOVE D3,D4
1020 MOVE D7,D2
1030 RTS

1040 SAMPLE MOVE D3,D4
1850 MOVE D7,D2

:COPY 1026,1040,1010

tLIST

10090 * LITTLE COPY EXAMPLE
1020 MOVE D7,D2
1030 RTS

1946 SAMPLE MOVE D3,D4
1616 SAMPLE MOVE D3,D4
1029 MOVE D7,D2
1030 RTS

10409 SAMPLE MOVE D3,D4
1050 MOVE D7,D2

LISTING CONTROL COMMANDS: FAST, SLOW, PRT, "

The listing control commands are used to control the speed
of display on the screen, and to control printing of
listings on other devices. One special command allows
sending setup control characters te your printer.

FAST and SLOW commandsS: ..e.eeesceess SFAST

:SLOW

FAST sets the listing speed to the normal speed, which is

3-38

too fast for most people to read. When you start the Macro
Assembler, it is set to the FAST mode. If you abort a
listing by hitting the RETURN key, the system returns to the
FAST mode.

SLOW reduces the listing speed so that you can read it as it
goes by on your screen.

In both the FAST and SLOW modes, you can momentarily stop
the listing by tapping the space bar (or any other key
except RETURN). You can abort the listing by typing the
RETURN key. When the listing is stopped, pressing two keys
at the same time causes one additional line to be listed.

PRT Command: ...ceeeeecececeessosoccoscss 3PRT

Provides a "hook" for a user-supplied printer driver., If
you have and Apple parallel or serial printer board, the
usual PR# slot will activate your printer, 1If you have a
printer driven through the game port, or an interface board
which requires special handling, you can use the PRT command
to turn it on. If you don't need it for a printer, PRT can
serve as a second USR command.

PRT executes a JSR $DO09 ($30609), where you can put a JMP to

your printer driver. Remember that this driver is written
in 6502 code, not 6800@ code.

(") Command: .eeeoececesceassscssseas $"string

Sends the specified string to the currently selected output
device. If your printer is currently selected, you can send
control-codes to it.

Remember that in order to enter a control-character on an
input line, you type the control-O (override) followed by
the desired character.

For example, if you are using an MX-8¢ printer and wish to
set the italics mode, type:

"control-0O(ESC)4

3-39

EXECUTE 680600 CODE COMMANDS: QON, DBUG

These commands start up the Q-68 Board.

QON Command: ...eeecescsssecancscess :QON

This command executes a CALL to Apple II location $30B. It
is assumed that the Q-68.STARTUP.BIN program has been loaded
at address $360. (This is done automatically when the
system is booted with the QPAK-68 system disk).

The routine at $30B turns on the Q-68 board, and then
returns to the caller, which in this case is the Macro
Assembler. The Macro Assembler continues to run after the
Q-68 board is turned on.

Note that when you start the Q-68 board using "QON", your
68000 program must take care of installing the 68@@@ RESET
vectors at $8¢#, See Chapter 2.

DBUG Command: .sceseceecccsnsesssscess sDBUG

Fires up the DEBUG program in the Q-68 board. You will
usually use "DBUG" just after a succcessful assembly of your
68000 code.

This command assumes that Q-68.STARTUP.BIN is in memory at
$3@0@¢. The RESET vectors for starting up DEBUG are installed
at $800, the Q-68 card is turned on, and a special 6502
routine is entered.

This 6502 routine continuously checks for a CTL-B or CTL-D
command. Since the 6502 is fully occupied with this task,
it does not interfere with DEBUG's use of the Apple II
keyboard or text screen,

The "Q-68.STARTUP" program is explained in Appendix D.

OBJECT COMMANDS:ceseeeeasasasss ASM, MGO, VAL, SYMBOLS

Object commands are used to assemble source programs into
object programs, execute 6502 object programs, and to print
the value of label expressions after assembly.

ASM Command:cocescacasscasasecess SASM

Initiates assembly of your source program. The Macro
Assembler is a two-pass assembler., During the first pass it
builds a symbol table with the definition of every label
used in your program. During the second pass the assembler
stores object code into memory (or writes it on a disk file)
and produces an assembly listing on the screen and/or the
printer. At the end of the second pass all the labels and
their values are listed in alphabetical order.

The assembly listing may be momentarily interrupted and
restarted by tapping the space bar. You may abort the
assembly by typing the RETURN key. The assembly listing may
also be controlled with the .LIST directives, to print any
part of it or none at all.

If any errors are detected in either pass, they are printed
along with a copy of the offending line. Assembly normally
continues after an error, so that you can catch as many
errors as possible in one pass. 1If any errors are detected
during pass one, pass two is not attempted. At the end of
assembly the total number of errors is printed. The
assembly error messages with their probable causes are
listed in Appendix B.

MGO Command:cvieeeeeeeessass.. :MGO expression

Begins execution of a 6502 object program. An expression or
label name must follow the MGO command to define the place
to begin execution.

:MGO BEGIN (Start execution at label BEGIN)
tMGO $300 (Start execution at $300)

The 6502 program can return to the Macro Assembler either by
using an "RTS" instruction, by a "JMP $3D@" (if DOS is
active), or by a "JMP $D@O3" ($3003). You may also abort
your program by hitting the RESET key. If your Apple has
the Autostart ROM, you will come out in the assembler. If

you come out in the monitor, type 3D@G to reenter the
assembler.,

This command is really designed for use with the 6502
Assembler from S-C Corp. Don't try to jump to a 68080
program with MGO--remember that the Apple's 6502 is running
the assembler, and when it sees an MGO, it expects to find
executable 6502 code at the "MGO" address.

One use for MGO would be to directly access the various
entry points of the Q-68.STARTUP.BIN program. See Appendix
D.

VAL Command:ceceeesaseececsss VAL expression

Evaluates any legal operand expression, and prints the value
in hexadecimal. It may be used to quickly convert decimal
numbers to hexadecimal, to determine the ASCII code for a
character, or to find the value of a label from the last
assembled program,

s VAL 12345

99903039

$VAL -21846

FFFFAAAA

$VAL 'X (ASCII value)
20000058

¢t VAL LOOPA+3

000084E

SYMBOLS Command:ceceeesesssos :SYMBOLS

Displays a copy of the Symbol Table, just like the one that
is normally printed at the end of pass two of an assembly.

MISCELLANEOUS COMMANDS AUTO, MANUAL, INCREMENT,
MEMORY, MNTR, RST, USR

The last seven commands do not fit into any other category.

AUTO Command: ..cceeecesevssecseecsssces $AUTO
tAUTO #

Turns on automatic line numbering mode. 1In this mode, a new
line number is automatically generated every time you end a

line, Lines are ended by typing RETURN, by backspacing over
the prompt symbol, or by typing control-X.

If AUTO is used without a parameter, the generated line
numbers start with the next number after the last line you
entered or deleted. The next number is formed by adding the
INCREMENT value. The increment can be changed with the
INCREMENT command.

AUTO followed by a line number starts the numbering at that
value.

AUTO should be used when EXEC-ing in text files from another
source, This way, you can even use the Macro Assembler to
edit BASIC programs which have been listed into text files
(as long as you don't need to renumber the BASIC line
numbers) .

You can type commands while in the AUTO mode by typing
backspaces to the beginning of the line (next to, not over,
the prompt) and then typing the MANUAL command.

The AUTO mode is also terminated by hitting RESET, or after
any error message.

MANUAL Command: ...eeevescccccsseess SMANUAL

Terminates the automatic line numbering (AUTO) mode. To use
the MANUAL command, first backspace over the line number,
just to the right of the colon, and type MANUAL (or simply
MAN) .

INCREMENT Command:eseeeseeeeee. :INCREMENT number

Sets the increment used for automatic line number generation
(both control-I generated numbers and AUTO mode numbers).
The increment is normally 16, but you may set it to any
value between @ and 9999. (Of course, an increment of @
makes no sense. Neither does a large value like 9999. But
you can use them if you wishl)

:INC 5 (set increment to 5)
sINC 10 (set increment to 10)

MEMORY Command:ececeeeecesessss sMEMORY

Displays the beginning and ending memory addresses of the
source program and the symbol table.

:MEM

SOURCE PROGRAM: S$94F3-960@4
SYMBOL TABLE: $3000-3274

Memory between the top of the symbol table and the bottom of
the source program is free to be used without clobbering
anything.

The assembler automatically protects memory (during
assembly) from $3000 to the top of the symbol table, and
from the bottom of the source program through $FFFF. This
insures that your object program does not clobber the
assembler, the source program, or DOS.

MNTR command: ..eceacesececosnseassess SMNTR

Enters the Apple system monitor. This is the same as CALL
-151 from BASIC. You may reenter the Macro Assembler by
typing DO03G, 3D@G, or hitting RESET.

:MNTR

RST Command: ..sseseesecescsacsscess SRST expression

Changes the Apple II RESET vector to the specified value. If
you are using the Autostart Monitor, pressing the RESET key
causes a branch to the address in the RESET vector.

Normally this is set to $3D@ by DOS to reenter the
assembler, but you may change it to enter the monitor,
BASIC, or your own 6502 program.

:RST -151 (RESET enters the monitor)

tRST SFF69 (also enters the monitor)

:RST $3D@ (RESET enters DOS and assembler)
:RST $300 (RESET enters program at $300)

USR Command: ..seeescsscssesscssasass :USR whatever

An open-ended command, waiting for you to design and
activate with your own 65062 code.

When you type the command "USR", a JSR $D@@6 (53006)
instruction is executed., If you have not installed a JMP to
your own 6502 program at $D@@6, the command is equivalent to
a "No Operation" command. You can write a 6502 program to
process your own command, and put a JMP instruction to it at
$D@06.

The entire command line is stored in the monitor input
buffer, starting at $620@. Your USR command processor can
scan the input buffer to pick up any parameters you wish.

Remember that USR calls and runs 6502 code, not 68008 code.

DOS COMMANDS

All the Apple DOS commands are valid, even though you are
operating from within the Macro Assembler., This feature
allows you to maintain your source and object programs on
disk using the LOAD, SAVE, BLOAD and BSAVE commands. Source
programs appear in the disk catalog with a type code of "I1I",
just as though they were Integer BASIC programs,

Housekeeping Commands: CATALOG, RENAME, DELETE, LOCK,

UNLOCK, VERIFY, MON, NOMON, and MAXFILES can be used as you
desire. They function exactly the same within the Macro
Assembler as they do within BASIC,

Source Maintenance Commands: LOAD and SAVE when used with a
filename are interpreted by DOS. If no filename is
included, the Macro Assembler interprets them as cassette
tape commands.

Object Maintenance Commands: BSAVE, BLOAD, and BRUN
commands may be used to maintain object programs on the disk
and to execute them. Be careful when using BLOAD and BRUN
that the program you are loading does not load on top of
anything you want to keep. And remember that BRUN applies
only to 6502 programs, not those for the Q-68 board!

1/0 Selection Commands: PR#, IN#, and EXEC commands may be
used. PR#(slot) activates Apple intelligent interfaces for
printers and other devices. 1IN#(slot) may be used with
other terminals, modems, et cetera. EXEC executes a stream
of commands or reads in a series of source lines from a text
file.

BASIC Commands: INT and FP may be used to exit the Macro
Assembler and enter either Integer Basic or Applesoft.

Commands you should not use: RUN, CHAIN, and INIT will not
do what you expect. Avoid typing the "RUN filename"
command, because it would be recognized by DOS as an attempt
to load and execute an integer BASIC or Applesoft program.
However, since the DOS links have been set up for the Macro
Assembler, the program would not execute. It would just
clobber memory, possibly your source program or the
assembler itself!

The CHAIN command is equally dangerous. INIT will properly
format a disk, but it writes your source program (which is
not executable) as the HELLO program! It is much better to
INIT from within Applesoft or Integer BASIC.

MONITOR COMMANDS

411 of the Apple II Monitor commands are available from
within the Macro Assembler. You use them by typing a dollar
sign ($) after the prompt symbol, followed by any monitor
command .

Monitor commands are explained on pages 40-66 of the Apple
II Reference Manual. With these commands you may examine,
change, move or verify memory; read and write cassette
tapes; disassemble 6502 machine language programs; execute
6502 programs; and perform hexadecimal arithmetic.

3-47

Section 3.6 -- Directives

Twenty assembler directives are available in the Macro
Assembler to control the assembly process and to define data
in your programs. Directives are indicated by a period
followed by two or more letters.

.OR Origin .BS Block Storage

.TA Target Address .LIST Control Assembly Listing
.TF Target File LTI Title

. IN Include File .US User defined directive
.EN End of program . PG Page eject

.EQ Equate .DO Conditional Assembly
.DA Data .ELSE Conditional Assembly
.HS Hex string .FIN Conditional Assembly
.AS ASCII string .MA Macro definition

.AT ASCII terminated .EM End macro
OF1ginNtseaenonsnsscoranesasssss .OR expression

Sets the program origin and the target address to the value
of the expression. The origin is the address at which the
object program is to be executed. Target address is the
memory address at which the object program is stored during
the assembly. The .OR directive sets both of these to the
same value, which is the normal way of operating.

The origin of a program may be set to any value from $4¢
through $FFFFFFFF. However, if you are assembling to
memory, you must specify a target address (where the object
code is stored) somewhere in the Apple's memory range. 1If
you use a target file (.TF), the DOS BLOAD address will be
the same as the low order 16 bits of the origin. If you
want to load it elsewhere from disk, specify the address
parameter with the BLOAD parameter in the normal way.

If you do not use the .OR directive, the assembler sets both
the program origin and the target address to $196@¢. If the
expression is not defined during pass one prior to its use
in the .OR directive, an error message is printed.

If a .TF (Target File) was active before the ,OR directive,
it is closed out when the .OR directive is encountered.

Target AdAress:veeeeececncons .TA expression

Sets the target address at which the object code is stored
during asssembly.

The target address is distinct from the program origin
(which is either set by the .OR directive, or is implicitly
set to $100@). The .OR directive sets both the origin and
the target address; the .TA directive sets only the target
address. Object code is produced ready to run at the
program origin, but is stored starting at the target
address.

We used the .TA directive to assemble code for the Q-68
board MONITOR. This code, which is in the onboard EPROM,
starts at location $100006. This address is unknown to the
Apple, since Apple memory extends only up to SFFFF. But we
had to store the object code somewhere, in preparation for
burning it into an EPROM. The EPROM burner we use looks for
data starting at Apple location $4600. So we preceeded the
assembly code of the MONITOR program with:

.OR $10006¢
.TA 54000

Although the object code produced by this assembly is
designed to run at starting address $1000¢, it is stored at
starting address $4000.

Target File: .cceeevescveceassonncan .TF filename

Causes the object code to be stored on a binary disk file,
rather than in memory. Only the code which follows the .TF
directive is stored on the file. Code is stored in the file
until another .TF directive is encountered, or until a .TA
or .OR directive is encountered.

The filename specifier may include volume, drive, and slot
numbers if necessary. If you have both .IN and .TF
directives in the same assembly, and the files involved are
not on the same disk, you need to specify drive number (and
maybe slot numberj with every .IN and with every .T
directive,

1040 .TF OBJ,S6,D1

This example causes object code to be saved in a disk file
called "ORJ", on ths slot 6, drive 1 disk drive.

Apple object vode, which is saved as a "B" type file, allows
only one load address. Therefore, if your program consists
of several pieces with different origins, each piece must be
stored as a separate disk file, This requires a .TF
directive {and a different file name) for each section.

1690@ .OR $1680@
10189 .TF PROGL
2009 .OR $10084
2010 .TF PROG2

If you later do a "BLOAD"™ of PROGl, it will load at $1000;
and if you do a "BLOAD"™ of PROG2, it will load at $0084
(only the bottom 16-bits are used). The load address may be
overridden by including the "AS$" directive in the BLOAD
operation. For example, "BLOAD PROG2, AS$4000" would load
PROG2 starting at address $40066¢.

During assembly, the Macro Assembler temporarily patches DOS
to allow a binary file to be handled with text file
commands. It also creates a text file with your specified
name and uses text file techniques to write the object code
into the file, When assembly is complete, or when the .TF
range is ended by encountering another .TF (or .TA or .OR),
the text file is transformed into a binary file by modifying
the DOS directory entry.

If you have typed "MON C" {a DOS command) before assembly,
the DOS commands issued by the assembler for the .TF
directive are printed on the assembly listing. For each .TF
directive, during pass two, you will see the following
sequence:

OPEN file name
DELETE file name
OPEN file name
WRITE file name

If you have typed "MON O" (a DOS command), you see lots of
crazy characters on the screen during pass two of the
assembly. These are the object code bytes which are being
written to the Target File. 1t is better to not set MON O
mode.,

InClude: ..veeeconsrcascccnsscnasnse .IN filename

Causes the contents of the specified source file to be
included in the assembly.

The program which is in memory at the time the ASM command
is typed is called the "root" program. Only the root
program may have ,IN directives in it. If you attempt to
put .IN directives in an included program, you will get a
"NESTED ,IN" error,

When the .IN directive is processed, the root program is
temporarily "hidden" and the included program is loaded.
Assembly then continues through the included program. When
the end of the included program is reached, it is deleted
from memory and the root program is restored. Assembly then
continues with the next line of the root program.

1f you type the MON C command (a DOS command) before
beginning assembly, the LOAD commands issued by the
assembler are printed with the listing. Each included
program is loaded in turn during pass one of the assembly,
and again during pass two.

The .IN directive is useful in assembling extremely large
programs, which cannot fit in memory all at once. It is
also useful for connecting a library of subroutines with a
main program. Some programmers prefer this method over the
use of macros.

The filename portion of the directive is in standard DOS
format, and may include volume, slot, and drive number.

End of Program: .,...seceseeessessss oEN

Defines the end of the source prograwm, or of an included
(.IN) module. You would normally make this the last line,
but you may place it earlier in order to assemble only a
portion c¢f your scurce proegram, If no .EN is present in
your program, the assembler assumes that you meant to put
one after the last line. Most assembleys for scme strange
reason go completely crazy if the BN d ctive is missingl

Equate: .e.ieieteeecencercnesnesssss label .EQ expression

Defines the label to have the value of the expression. If
the expression is not defined, an error message is printed.
If you neglect to use a label with an equate directive, an
error message is printed also.

DAata: tieeseccescescossssecoansseess label .DA exprlist

Creates constants or variables in your program. "Exprlist"
is a list of one or more expressions separated by commas.
Each expression may be treated as one, two, or four bytes,
depending on how it is written.

I1f a # preceeds the expression, it is treated as an 8-bit
value,

I1f a / preceeds the expression, it is treated as a 16-bit
value.

If nothing preceeds the expression, it is treated as a 32
bit value.

You may isolate any 8-bit or 16-bit field within a 32 bit
value by using the leading "4#" or "/", together with
division by an appropriate value. For example, if you want
to represent the third most significant byte of a 32 bit
number in a .DA directive, you could use

.DA #VALUE/256
or

.DA #VALUE/$100

Similarly, to specify the high order 16 bits of a 32 bit
number, use

.DA /VALUE/65536
or

.DA /VALUE/$10000

(Don't confuse the two "/" symbols. The first means
truncate to 16 bits; the second means divide).

The value of the expression, as one, two, or four bytes, is
stored at the current location. If a label is present, it
is set to the address where the first byte of data is

stored.

The .DA directive may be used to reserve RAM space for a
variable. For example, the code:

COUNT .DA S0

reserves four bytes of RAM for later use as the variable
COUNT.

If you use .DA to define a variable, it is a good habit to
use an expression like "*-*" yhich has a value of zero.
This weird expression might make your program more
self-explanatory when you look at it again next year. The
funny form emphasizes the fact that the data value put at
COUNT has no significance--it merely reserves space.

A common use for the .DA directive is to set up the vectors
for the Q-68 board. If you are going to start up the Q-68
board with the "QON" command, the following code must appear
somewhere in your 68000 source program:

.OR S800 ;68008 page @
.DA INITSP ;initial stack pointer value
.DA INITPC ;jinitial program counter value

More .DA statements will follow this if you use more of the
68008 exception vectors. (If you don't know about exception
vectors, take a look at Section 7).

Hex String: ...veeceeseccescecences. label .HS hhh...h

Converts a string of hex digits (hhh...h) to binary, two
digits per byte, and stores them starting at the current
location. If a label is present, it is defined as the
address where the first byte is stored. 1If you do not have
an even number of hexadecimal digits, the assembler prints
an error message.

NOTE: Unlike hexadecimal numbers used in operand
expressions, you must not use a dollar sign with the .HS
directive.

ASCII String ...eecececcecsonsssesss label .AS *aaa..a*

Stores the binary form of the ASCIT characters "aaa...a" in
sequential locations beginning at the current location. If
a label is present, it is defined as the address where the
first character is stored. The string "aza...a" may contain
any number of the printing ASCII characters. You indicate
the beginning and end of the string by any delimiter (*) you
choose.

ASCII character codes are seven bit values., The ,AS
directive normally sets the high-order, or 8th, bit to
zero, Some people like to use ASCII codes with the
high-order bit set to one, so the Assembler includes an
option for this.

I}

.AS *aaa...a* sets the high-order bits

[*]
.AS -*aaa...a* sets the high-order bits 1

The delimiter (*) may be any printing character other than
space or minus.

ASCII Terminated:ececseceeseasass label AT *aaa...a*

This works just like the .AS directive, except that the
high-order bit of the last byte in the string is set
opposite from the preceding bytes. This allows a
message-printing routine to easily find the end of a
message.

Block Storage:ceeceeesses.... label .BS expression

Reserves a block of bytes starting at the current location
in the program. The expression (range:1-65535) specifies
the number of bytes to reserve, 1If there is a label, it
assigned the value at the beginning of the block.

The address of the beginning of the block is printed in the
address column of the assembly listing.

If the object code is being stored directly into memory, no
bytes are stored for the .BS directive. However, if the
object code is being written on a disk file by using the .TF

directive, the .BS directive writes <expression> bytes
(value: @0) to the file.

Title: tiieieeesenecnseceasenesasss LTI expression, title

When .TI is in effect the assembler prints a title line and
page number at the top of each page. The expression
specifies the maximum number of lines you want to print on
each page. The title can be up to 70 characters long and is
printed starting at the left margin. "PAGE xxxx" is printed
immediately after the title.

If you do not specify a title, only the page number is
printed at the left margin. Spacing or centering of the
title and page number can be adjusted by adding leading or
trailing spaces to the title.

The Macro Assembler issues an automatic formfeed when a page
fills up. 1If you want to end a page early, use the .PG
directive. You can use more than one .TI directive in a
program if you like. The .TI directive issues a formfeed
command when encountered in the listing.

You can turn off titles by using .TI with a pagelength of
zero.

Listing Control: ...eieecececeanes .LIST optionlist

Controls the listing output of the assembler. "Optionlist"
is a list of one or more of the following keywords:

OFF Listing off.
ON Listing on.
MOFF Macro expansion listing off.
MON Macro expansion listing on.

If .LIST OFF is put at the beginning of the source program,
and no .LIST ON is used, no listing at all is produced. The
program assembles much faster without a listing, as most of
the time is consumed in putting characters on the screen and
scrolling the screen up.

If you put .LIST OFF at the beginning of your source
program, and .LIST ON at the end, only the alphabetized
symbol table is printed.

You may also use this pair of directives to bracket any
portion of the listing you wish to see or not see.

With .LIST MON in effect, the complete macro expansion is
listed. The call line is printed with its line number, then
the expansion lines, each with a line number of "¢@0@>".

Page Control: ...ceecccccccancnans . PG

Prints an ASCII Form Feed character ($8C). If the assembly
listing is being printed on a printer which recognizes this
character, a form feed occurs and the next listing line
appears at the top of the next page. The .PG line itself is
not listed.

Conditional Assembly:¢ece¢.... DO expression
.ELSE
.FIN

With these directives, you can include or exclude a
particular section of code in the assembly, depending on a
condition set earlier. The operand expression is evaluated
as a truth value, and must be defined before the ".DO".
Zero means skip source code lines; non-zero means assemble
them,

The .ELSE directive toggles the current truth value,
allowing an "if...then...else" structure. There may be more
than one .ELSE directive within the ".,DO-.FIN" block; each
time .ELSE is encountered the truth value is switched. .FIN
terminates the conditional section, .ELSE is optional but
.FIN is required.

".DO-.FIN" blocks may be nested up to 8 deep.

These directives are often used to produce different
specialized versions of a program from the same source

code. For example, the main memory and language card
versions of the Macro Assembler were assembled from the same
source code, using a .DO flag called LCASM. When a change

is made to the assembler, only one source line needs to be
edited to generate the two different versions. The source
program is assembled twice, once with LCASM=1, and once with
LCASM=0,

".DO-.FIN" blocks can also be used to exclude testing

routines from the finished program, to relocate a RAM
variable area, or to add or delete extra variables.

The following page shows three ".DO-.FIN" examples.

1060 * CONDITIONAL ASSEMBLY DEMO

1910 * -
1029 FLAG .EQ [

1030 .DO FLAG

1040 BSR PLACEL

1050 .ELSE

1060 BSR PLACE2

1970 .ELSE

1089 BSR PLACE3

1099 .FIN

1109 RTS

1110 * e e

1129 PLACE1l RTS
1136 PLACE2 RTS
1140 PLACE3 RTS

tASM
1008 * CONDITIONAL ASSEMBLY DEMO
1010 *emm e e e
00000006~ 1020 FLAG .EQ %}
1930 .DO FLAG
1050 .ELSE
00001000~ 6100 0006 1060 BSR PLACE2
1970 .ELSE
10909 .FIN
00001004~ 4ET5 1100 RTS
1110 * e e e el
00001606~ 4AETS 1120 PLACEl RTS
000010088~ 4E75 1136 PLACE2 RTS
0000190A- 4E75 114¢ PLACE3 RTS
11020 FLAG .EQ 1
$ASM
1000 * CONDITIONAL ASSEMBLY DEMO
1010 * e e -
po000001 - 1620 FLAG .EQ 1
1830 .DO FLAG
00001000~ 6100 0008 1040 BSR PLACE1
1059 .ELSE
1067¢ .ELSE
00001004~ 6100 0008 1080 BSR PLACE3
1099 .FIN
#0001008- 4ETS5 1100 RTS
1110 %o
0@00@100A- 4E75 112¢ PLACE1l RTS
#000100C~ 4ETS 113¢ PLACE2 RTS
00@B100E~ 4ET75 1140 PLACE3 RTS

Here is a conditional assembly example which illustrates how
a program may be assembled in two versions: A RAM version
at origin $100608, or a ROM version at origin $10¢84.

:ASM
00000001~ 100@ TRUE .EQ 1
g0000000~ 1019 FALSE .EQ]
1020 * e e
99000001~ 1030 RAM .EQ TRUE
1040 * e
1050 .DO RAM
1060 .OR $1000 ; RAM ADDR
1670 .ELSE
1100 .FIN
1110 * e e
90001006- 4E71 1129 NOP
1436 RAM .EQ FALSE
¢ASM
00000031~ 1000 TRUE .EQ 1
00000000~ 1016 FALSE L.EQ]
1020 *—m e e
000003060~ 1030 RAM .EQ FALSE
1040 * e e
1050 DO RAM
1870 .ELSE
1080 .OR $106084 ;ROM ADDR
109¢ .TA $1000
1100 LFIN
1110 ¥ e e
000100984~ 4E71 1120 NOP
Macro Definition: ...eceeecncacesns .MA macro name
End Macro: . EM

A macro definition must begin with the directive .MA <macro
name>, and end with the .EM directive., For detailed
information, see Section 3.8 on macros.

User Directive: ...iiececeasececnns label .US whatever

The .US directive allows for possible expansion of the
assembler by users. When. the ,US directive is processed
(both in pass 1 and pass 2), a branch is made to location
$D@OC ($300C). This location normally contains a 6502 JMP
instruction, which treats the .US as a comment. The source
line (without the line number) is in the keyboard buffer
starting at $6200.

If you wish to use the ,US directive, change $DOOC-$SD@GE
($300C~-$30B0E) to jump to your own 6502 program. Details of
the steps necessary to implement your own directives are
published in the September 1981 issue of Apple Assembly
Line, available from:

S~-C Software Corporation

2331 Gus Thomasson, Suite 125
P.O. Box 280300

Dallas, Texas 75228

(214) 324-2050

Section 3.7 -~ OPERAND EXPRESSIONS

Operand expressions are written using elements and
operators, The valid operators are +, -, *, /, <, =, and

>. Terms may be decimal or hexadecimal numbers, labels, a
literal ASCII character, or an asterisk (*). The first term
in an expression may be preceded by a + or -.

Operand expressions have 32 bit precision. This gives a
range of 0-4,294,967,295 decimal; and $@-$FFFFFFFF hex.

ELEMENTS

Decimal numbers: A number with no prefix is assumed to be
decimal (base 10).

MOVE.B #200,D3
MOVE.L #-10,D4
.DA 35691
FLAG .EQ -1
.DA 4096*256*12

Hexadecimal Numbers: Hexadecimal numbers are preceded by a
dollar sign, and may have from one to eight digits.

.OR $1000@
MOVE.B $#$2F,D5
MOVE . W D6,$18400

MOVE.L $$18000,A2

Beware of the missing dollar sign! The assembler may be
quite satisfied to think of your hexadecimal number as a
decimal one if you omit the "$". 1In some cases even a
number with letters in it, such as 23AB, may be acceptable;
it may be interpreted as decimal 23 and a comment "AB".

Labels: There are three types of labels in the Macro
Assembler. Normal labels are from 1 to 32 characters long.
The first character must be a letter. Following characters
may be letters, digits, or periods. Local labels are
written as a period followed by one or two digits. Private
labels are written as a colon followed by one or two
digits.

Labels must be defined if they are to be used in an

3-63

expression. Labels used in operand expressions after .OR,
.TA, .BS, and .EQ directives must be defined prior to use
(to prevent an undefined or ambiguous location counter).
Labels are defined by being written in the label field of an
instruction or in a directive line.

Literal ASCII Characters: Literal characters are written
as an apostrophe followed by the character. The value is
the ASCII code of the character (a value from $8@ through
STF) . ‘

LTRA .EQ 'A
.DA $'X,'a
MOVE.B $'z,D3

If you wish to use literal ASCII values with the sign bit
equal to 1 (codes $80-$FF), you can do so by adding $8¢ in
the operand expression

LTRA .EQ 'A+589
.DA $'X+$80, 'A+S580
MOVE.B $'2+$89,D3

Asterisk (*): Stands for the current value of the location
counter. This is useful for calculating the length of a
string.

MES .AS /ANY MESSAGE/
SIZE LEQ *-MES
VAR .EQ ok ;0
FILLER .BS $900-* ;Fill from here thru
; S8FF
OPERATORS

You can use arithmetic and relational operators in operand
expressions. Expressions are evaluated strictly from left to
right, with no other precedence implied. Parentheses cannot
be used to change this order.

Arithmetic Operators (+ - * /): Any of the four arithmetic
operators may be used in an operand expression.

All operations are performed on 32-bit values.

()

-64

Multiplication returns the low-order 32-bits of the 64-bit
product.

Overflow and division-by-zero are not considered assembly
errors, Overflow merely truncates, returning the low-order
32-bits. Division-by-zero returns the value SFFFFFFFF.

Relational Operators (< = >): The three relational
operators compare two 16-bit values. If the relation is
true, the result is 1. 1If the relation is false, the result
is @. The result can be used in further calculations, and
as the truth value for conditional assembly (.DO

directive).

Three elementary operators are available: Less than (),
equal (=), and greater than (>). They cannot be combined as
they are in BASIC to form <=, <>, >=, However they may be
used with the AND and OR operators described in the next
paragraph to achieve these combined operators.

The result of a relational expression is a true or false
value. A value of zero is considered to be false, and a
non-zero value is considered to be true. You may operate on
logical values with * and + operators: * has the effect of
the logical AND, and + has the effect of the logical OR
operation.

If you are in doubt how an expression will evaluate, you can
use the VAL command to find out. Or you can go ahead and
assemble your program and see how it turns out,

tVAL 56>33
00000001

:VAL 33>56
090009000

:VAL 56>33*33>56
00000000

:VAL 56>33+33>56
000008001

Section 3.8 -- MACROS

A macro is a single instruction in your source code, which,
when assembled, is replaced by a predefined series of
instructions. You can use macros as a shorthand for
commonly used code sequences.

A SIMPLE MACRO

Here is a small section of code which adds two 64 bit
values. The number starting at memory location $10600 is
added to the number at $1008, and the result is stored
starting at $100¢.

MOVEA $#51000+8,A0
MOVEA #51008+8,A1
MOVE $#0,CCR

ADDX.L - (A1) ,-(n0)
ADDX.L -(Al),~(AQ)

We can define a macro called DBLADD to do this operation.
Just add the following two directives to the program code:

.MA DBLADD ;macro name

MOVEA $#51000+8,A0

MOVEA #510068+8,A1

MOVE #0,CCR

ADDX.L -(Al),-(n@)

ADDX.L ~{Al),-(n0)

+EM send of definition

Now to do the same operation in your program, simply put:
>DBLADD

Macros are indicated by the leading ">" symbol. Whenever
the assembler encounters the the macro call ">DBLADD", it
replaces it with the actual program lines contained between
the .MA and .EM directives.

The object code will be the same with or without macros. 1If
an operation is used only once or twice in a program, it
probably isn't worth the effort to define a macro for it.
But if you have to do the same operation on several
different variables, a macro can save a lot of work. Macros
can also help prevent common mistakes, such as incorrectly

specifying data sizes.

CALL PARAMETERS

Suppose you want to generalize the above macro to use any
memory locations; not just $1080-$106F. You can "pass"
parameters to macros., Parameters are values which are
defined when you call the macro.

+MA DBLADD ;macro name

MOVEA #11+8,A0

MOVEA $#12+8,A1

MOVE 4$0,CCR

ADDX.L -(Al),-(a0)

ADDX.L -(Al),-(a0)

.EM ;end of definition

(You enter the "]" character on an Apple II+ by typing
shift-M).

The terms]1 and]2 are called dummy variables. "“Dummy"
means that they are put in as place markers, to be defined
later. There can be up to nine of these, from "}1" through
"}9". There is also a parameter which is automatically
defined. This is "]#", and it takes the value of the number
of parameters passed to the macro.

Now when the macro is called, it requires two values to plug
into the dummy variables:

>DBLADD $1¢00,$1008

Parameters are written in the operand field of the macro
call line, separated by commas. If you want a parameter to
include a comma or space, enclose the parameter in guotation
marks. If you want it to also include a guotation mark, use
two quotation marks in a row wherever you want one. For
example, in the macro:

>SAM JONES,$1234,"ABC DEF","ABC,DEF, "" GHI"

is JONES

is $1234

is ABC DEF

is ABC,DEF, " GHI
$ is 4

W N

I
]
]
]
]

What is actually passed to a macro parameter is a text
string, which literally replaces the corresponding dummy

variable.

This means that you can use expressions other than numeric
constants. For example, register names may be passed to

macros:

:ASM

03000800~ 1650
g0000e800- 3401 ge0a>

p0000802~ 111¢
00000802~ 3401 goaa>

ge00g0804- 1170
00000804~ 31F8 1060
90000808~ 11400 0600>

.MA A

.MA B

>B D1,D2
MOVE D1,D2

.MA C

>C $1000

MOVE $1000,51000+5100

In macro A, the macro supplies the "D" portion of the data
register name, and the parameters 1,2 supply the numbers,
In macro B, the entire register names Dl and D2 are passed.

Macro C uses a hex address, and the arithmetic expression
"]1+5100" to add $100 to the passed address. Note in the
assembly listing that $1000+$100 equates to $1100, as it

should.

PRIVATE LABELS

Private labels are used inside a macro definition to name
branch points in the same way that labels are used in the
main program. They are written as a colon (:) followed by
one or two digits.

The Macro Assembler considers each private label unique to
the macro in which it is used. This allows you to re-use
the same private labels in different macro definitions.
Private labels do not interfere in any way with local
labels. Here is an example which uses both private labels
and local labels:

10060 .OR $l@2a

1100 * e e e
1509 .MA SPIN

1510 MOVE 11,D2

1520 :1 DBF D2,:1

1530 .EM

1540 * e e e e
1542 *

1544 LOCAL.AND.PRIVATE.LABELS

1550 MOVE $$22,D3

1568 .1 >SPIN $550

1570 DBF D3,.1

:ASM

1000 .OR $S102A
1100 X e
1509 .MA SPIN
1510 MOVE 11,D2
1520 :1 DBF D2,:1
1539 .EM
1540 * e e
1542 *
1544 LOCAL.AND.PRIVATE.LABELS
@@00102A~ 363C 0822 1550 MOVE $$22,D3
0000102E- 1560 .1 >SPIN $$50
g000102E~ 343C 0050 0000> MOVE $$50,D2
00¢@¢1032- SICA FFFE 0@00> :1 DBF D2,:1
@00@1036- 51CB FFF6 1570 DBF D3,.1

SYMBOL TABLE

@000102a- LOCAL.AND.PRIVATE.LABELS
.01=0000082E

Each private label requires five bytes of storage during
assembly. This storage starts at $OFFF and works downward.
Consult Appendix A on memory usage for details.

LISTING THE MACRO EXPANSIONS

There are two directives which control the appearance of
macros in the asembly listing, With ,LIST MON in effect,
the complete macro expansion is printed. The call line is
printed first, and then the assembled code on subsequent
lines.

The expansion lines have line numbers of "@008>" to indicate
a macro, and are indented one space. When .LIST MOFF is in
effect, only the macro call line is printed. This saves
space and makes the logic of the program easier to follow.
You do, however, lose the listing of the object code, which
shows exactly what is stored at each address.

USING CONDITIONAL ASSEMBLY IN MACRO DEFINITIONS

You can use the .DO, .ELSE, and .FIN directives inside macro
definitions. They are executed during macro expansion, so

that the same macro can be expanded in different ways
depending on parameters.

An example of conditional directives inside macro
definitions is given in the Nested Macro Definitions
section, on the next page.

NESTED MACRO DEFINITIONS

You can call macros within macro definitions. This is not
recommended, since it produces convoluted and hard to follow
code. Many programmers, however, delight in the intracacies
of nested and recursive macros.

Suppose you want to write a macro which can be used to call
one or more subroutines on a single source line. For
example, CALL SAM should expand to BSR SAM. CALL SAM,TOM
should expand to JSR SAM and JSR TOM, and so on. You could
do it at least two ways: using conditional directives, or
using nested macro definitions.

Using conditional directives is fairly straightforward. The
following program shows how. The "]#" parameter is tested
to determine how many parameters are passed to the macro,
and thus how many BSR's to produce.

1000 .MA CALL
1010 BSR 11
10620 .DO 14>1
1030 BSR 12
10490 .FIN
1650 .DO J14>2
1060 BSR 13
16709 .FIN
1980 .EM
0o001000~ 19990 >CALL SAM,TOM,JOE
00001000~ 6100 0012 9000> BSR SAM
000> .DO 3>1
g0001004- 6100 0012 0206> BSR TOM
600> .FIN
2009> .DO 3>2
00001008~ 6100 00OC 0000> BSR JOE
008> LFIN
0000100C- 1109 >CALL SAM,TOM
0g0@3160C- 6100 0006 000G> BSR SAM
#eag> .DO 2>1
00001010~ 6100 0006 QG0GO> BSR TOM
0e0e> .FIN
0000> .DO 2>2
ooae> .FIN
09001914~ 4ETS 20008 saM RTS

0@0@1016~ 4E75 2010 JOE RTS
#0001618~ 4E75 2020 TOM RTS

The other approach uses a nested macro definition--one which
includes a call to another Macro. Three macros are set up
for each possible number of parameters: CALLl for one
parameter, CALL2 for 2, and CALL3 for three. Then the macro
"CALL"™ is used to call the appropriate one of those. The
"nested" macro is in line 1160.

1000 .MA CALL1
1010 BSR 11
1020 .EM
1030 * e e e
1040 .MA CALL?2
1050 BSR 11
1060 BSR 12
1970 .EM
1088 * e e oo e
1990 +MA CALL3
1100 BSR 11
1110 BSR 12
1120 BSR 13
1130 .EM
1140 %o
1150 .MA CALL
1164 >CALL]# 11,12,]13
117¢ .EM
1180 ¥ e
00001000~ 1190 >CALL SAM
0O0010600- o> >CALL1 SAM,,
00001000~ 6100 0016 @0QE>> BSR SAM
00001004~ 1200 >CALL SAM,JOE
00001004~ 000e> >CALL2 SAM,JOE,
00001004~ 6100 0012 00Q0>> BSR SAM
00001008~ 6106 @Q1e Q000>> BSR JOE
00g@109C~ 1219 >CALL SAM,JOE,TOM
0220190 C~ 2e00> >CALL3 SAM,JOE,TOM
000Q@180C- 6100 G00A 0000>> BSR SAM
gUee1010- 6100 GOE8 0000>> BSR JOE
GO0010L4- 6100 0006 G0BE>> BSR TOM
1215 *em o e
90801018~ 4E75 1220 SAM RTS
P000131A~ 4E75 1230 JOE RTS
@@B@1GLC~ 4ETS 1249 TOM RTS

POSSIBLE ERRORS

What happens if you supply more parameters in a macro call
line than the macro definition expects? The extra
parameters are simply ignored. You can use the]# parameter
with conditional assembly directives to test for the correct
number, if you wish.

If you do not supply enough parameters on the call line, the
missing ones are assumed to be null strings.

The Macro Assembler tests for three error conditions. 1If
you attempt to call a macro which has not been defined
earlier in the program, the ***UNDEFINED MACRO ERROR is
printed. 1If you use a .MA directive without a name in the
operand field, the ***NO MACRO NAME ERROR is printed. If
you use the "]" character without the digit 1-9 or the "4"
character,the ***BAD MACRO PARAMETER ERROR is printed.

MACROS AND SUBROUTINES

There is a significant difference between macros and
subroutine calls. A subroutine is placed in memory only
once, and called from different parts of the program. A
macro is inserted into your code every time you issue a
macro call. A macro thus executes faster than a subroutine
because no BSR-RTS is involved, but it uses more memory
because it is repeated in the program whenever it is used.

Debug

\

3nqaQq

The QWERTY Debugger

The Q-68 board contains an 8 Kilobyte ROM which holds a
comprehensive debug package ("DEBUG") for testing your 68000
programs. This chapter tells you how to use the many
features of the debugger.

WHY USE A DEBUGGER?

Here are some of the things DEBUG does for you:

1.

It provides a window into the 68008 processor. You can
look at everything inside--the address registers, the
data registers, the program counter and the status
register.

It lets you run your code one instruction at a time.
You can pause between instructions and view results.

It allows you to stop program execution at any
predetermined address and inspect what is going on.
This is done by setting breakpoints. You can then
resume execution exactly where your program left off,

It allows you to inspect and alter memory. You can look
at memory in HEX format, in ASCII to spot character
strings, or in 686@0 instruction form.

It lets you put labels on memory locations to help you
recognize important information.

It provides error notification and recovery for your
running program.

It can run in a "Remote" mode, in which "keystroke"
commands are passed to it from a BASIC (or machine
language) program, rather than from the Apple II
keyboard.

Considerable emphasis has been given to making the Debugger
easy to learn and use. Once you become familiar with it's
use, you won't want to test your programs any other way.

Before describing the Debugger, let's consider the kinds of
errors you are likely to make in writing 68000 code. We'll
see that the most difficult types to track down and fix are
handled easily by the Debugger.

TWO KINDS OF ERRORS

There are two general types of errors. Those that are made
when you write and assemble the program; and those made as
the program actually runs.

ASSEMBLY ERRORS

The Assembler checks your typed instructions for
correctness. Syntax errors account for most errors the
assembler finds. These are mistyped or incorrectly
specified instructions. For example if you type

MOV A2,Al

you will get a "BAD OPCODE" error, since you typed MOV
instead of the required MOVE.

Likewise, the code line:
MOVE B2, #45

will generate a "BAD ADDRESS" error, since you can't move
data into an immediate value. Both of these are syntax
errors.,

The assembler also reports errors related to the correct
operation of the assembler. If you define the same label
twice, you will get an EXTRA DEFINITION error, If you try
to assemble code into memory which contains the assembler
pregram, ycu will get a MEM PROTECT error.

(Appendix B lists all the Macro Assembler error messages).

RUN ERRORS

You might think that once you have cleaned up all the errors
which the assembler has reported, your code is bug-free.

Not so! There are errors which no assembler can catch. For
example, consider the following statement:

MOVE.L $45(A2,A3), (A4)+

The assembler is happy, since you have typed a legal
instruction with a legal address mode. But what if, as your
code executes, the contents of A2 and A3 become even?

Adding $45 would make the resulting address odd, which is
forbidden for word and long word addresses. (If you are
perplexed about words and long words, see section 8 of this
manual on data sizes).

The assembler can't possibly anticipate all values that A2
and A3 will assume as you run your program. This is a
classic case of a run-time error which can't be detected by
an assembler,

Here's where the debugger helps out. Using the extensive
Exception facilities built into the 68008, the DEBUG program
catches these errors and notifies you when they occur.

NOTE: If you are not familiar with Exceptions in the 68004,
please take a moment to read the EXCEPTIONS section in part
7 of this manual., There you will learn that run-time errors
cause program execution to be diverted through preassigned
memory locations, where you (or the DEBUG program) can put
addresses of routines to handle the error condition.

STARTING DEBUG

Let's walk through a typical assembly/debugging session.
Boot the QPAK-68 system disk, and select item 4 if you have
a language card or a Ile; item 3 if you don't.

After the assembler is loaded and running, indicated by the
":" prompt, type "LOAD DEBUG.TEST". Back at the ":" prompt
again, type "LIST".

This is the test program we are going to run with DEBUG. It
simply increments the registers. For a little variety,

Register D5 is incremented five times. The program loops
continuously, and never stops.

Now type "ASM". The Assembly listing will scroll by. The
68000 object code is placed at location $1060.

At this point you want to actually run your code and test
it. To do this, type "DBUG"™. This starts up the DEBUG
program. You should see this on your Apple II screen:

REGISTERS

REG**CONTENTS***XxRRG** CONTENTS*** *
* *
* . *
* DO >00000000 AG @0006000 *
* Dl ¢0060000 Al @0000008 *
* D2 00000000 A2 00000008 *
* D3 (0000000 A3 @000GGee *
* *
* D4 G000GEOQ A4 @00000GE *
* D5 (0066000 AS 00890600 *
* D6 00000000 A6 00000008 *
* D7 20800000 *
* SSP:A7 0018806 *
* USP:A7 00080008 *
* *
**********************T-S‘-—III“""’XNZVC**
* PC 00001000 SR 00106111009000800 *
T i e i e . s o s . i s el s i, i s o s e e e e i S s s *
* *
* 001686 ADDQ.W #1,D0 *
K e s o e o v e o i e 2 o 2 i i o i i o e o o i o o e e o et e *
* SET CONTENTS: *

Ak khkhhhkthhhhkkhkhhhkhh kRt hhhkrakkkhkhhxbkkk

Once DEBUG is running, you can start up your program code.
Befere doing so, you can examine your code, set up
breakpoints, and initialize registers.

DEBUG gives you a unique way to select which of its options
you wish to use., FEach debug mode uses a distinctive display
screen, Rather than memorizing several commands to select
the various modes, you use the arrow keys toc cycle from one
screen to ancther.

The screens cycle between these five modes:

Registers
Memory
Disassembler
Breakpoints
Help

Each screen has a title block at the top of the display, so
you won't have any problem knowing which of the five you are
viewing.

Now experiment a bit with the left and right arrow keys to
look at the five DEBUG screens.

All screens contain a command window that shows you the
available options for the screen, Hit the ESC key to cycle
the options in any window. We'll describe the five screens
in detail, but for now remember this simple two step
process:

1. Select the display you want by cycling the screens with
the right and left arrow keys.

2. Select the operation you want inside a screen by cycling
the COMMAND window with the ESC key.

FOR THOSE WHO CAN'T WAIT

Now we're going to quickly do some things with DEBUG. 1If
you're the methodical type, and wish to completely learn the
DEBUG system before actually trying it out, please skip
ahead to the next section, “"THE FIVE DEBUG SCREENS".

Using the left or right arrow key, select the DISASSEMBLY
screen. See the DEBUG.TEST program? The default display
address is $100@, which just happens to be the default
origin for the Macro Assembler.

Hit RETURN a few times to scroll the disassembly listing. As
you scroll past location $101E, the end of the test program,
you will see some interesting garbage. This is DEBUG's
attempt to translate what happens to be in Apple memory into
68000 instructions. Some memory values will translate into
legal instructions; some will not. Those which don't are
indicated by "??2?2?2".

Now hit the comma key a few times (this is the same as
shift-comma, or left caret). The listing scrolls

backwards! This is no mean trick--we'll tell how we do it
later.

Let's disassemble a different part of memory. See the "SET
ADDRESS" message at the bottom of the screen? Hit ESC a
few times and this line changes to SET COMMENT and back to
SET ADDRESS. This is the command window showing you the
available DISASSEMBLY screen options. Cycle it to SET
ADDRESS.

Now type 16084, return. This is the starting address for
DEBUG. DEBUG is looking at itself!

Enough of this. We don't want to tell you how easy it is to
disassemble the DEBUG program.

Use the right or left arrow key to select the REGISTERS
screen.

See the "PC" value of @@00100@? This is where program
execution will start. The small window at the bottom of the
screen shows you the disassembled instruction residing at
$1000--ADDQ.W #1°,D8, the first instruction of our test
program.

Now hit CTL-T once. Three things happen:

1. Register DU changes from @ to 1.

2, "pPC" changes from 1066 to 1002.

3. The disassembled instruction scrolls up, and a new one
at address 1002 is shown.

You actually saw the "ADDQ #1,D@" instruction execute!

The disassembly window shows the next instruction up for
execution. Hit CTL-T again and this one executes. Keep
hitting CTL-T and watch the instructions and the registers.
You see everything: The last instruction, the next
instruction, and the effect on the registers!

Those of you who are lucky enough to own an Apple 1Ie, hold
down the CTL and T keys. This produces a fast automatic
single-step. You II and II-plus owners have to hold down
three keys, REPT, CTL and T. CTL-T means TRACE, which lets
you execute instructions one step at a time.

Now type CTL~G. This runs your program at full speed.
Unfortunately, this program continuously loops, and there is
no way to stop it!

Except by hitting CTL-B (BREAK), that is. Try it now. Hear

the little "zip" sound? You'll hear this anytime a break
occurs (when you use CTL-B, or when a breakpoint is
encountered). Now look at the registers. They have counted
up pretty far, haven't they? Why is D5 different than the
others? Because 5 was added every time 1 was added to the
other registers.

Try a few more CTL-T's. Now you're single stepping from
where the break occured. You can use CTL-T, CTL-G and CTL~-B
all you want, and DEBUG keeps the program executing on
track.

You can watch any of the DEBUG screens as your program
executes, For example, you probably would want to watch the
MEMORY screen if your program alters memory values. You can
switch back and forth between screens as you single step or
run your code with CTL-G.

Now for a surprise. Hit CTL-V. There's the source listing
that was on the screen before you issued the "DBUG"
command. CTL-V lets you watch Apple II video screens as
your code runs. You're now looking at the Apple‘'s TEXT
screen. Hit CTL-V again, and then again. You should see
graphic garbage. These are the (uninitialized) apple HIRES
screens #1 and #2. One more CTL-V takes you back to the
DEBUG screen.

Now let's set a breakpoint. Make sure that you are viewing
the DEBUG screen (use CTL-V if you're looking at an Apple
screen). Now select the BREAKPOINTS screen with the left or
right arrow.

Notice that the command window shows "SET ADDRESS". Type
101E, RET. You've just set your first breakpoint. Go back
to the REGISTERS screen. Let's start the program at the
beginning, address $106¢. Hit CTL-P. The command window
now shows, "SET PC:". Type 1600, RET. This is how you
specify the run address.

Now hit CTL-G for GO. The program starts at your "pC:"
address, $10006. Hear the Breakpoint sound? The message at
the bottom of the screen shows you which breakpoint you
hit. Now hit CTL-G a few more times. Each time Breakpoint
#@ is encountered, all the registers in the program have
been altered.

If you wish to clear the BREAKPOINT #0 message, simply
select a different screen, and then reselect the REGISTERS
screen.

With this brief tour of DEBUG's capabilities, we're now
ready to investigate the intricacies of the DEBUG program.

THE FIVE DEBUG SCREENS

Before looking at the five modes in detail, let's take a
look at the general screen layout.

REGISTERS

kREGCONTENTS *** ****REG* ¥ CONTENTS ** * *

* *

* *

* D@ >00000000 AQ 00000000 *

* D1 00000000 Al 00000000 *

* D2 00000000 A2 00000000 *

* D3 Q00000008 A3 00000000 *

* * Data

* D4 00000000 A4 00000000 * Window
* D5 00000000 A5 00000000 *

* D6 00000000 A6 00000000 *

* D7 00000000 *

* SSP:A7 @001880¢ *

* USP:A7 00000000 e

* *

IR A IR KK IR AR KKK KKK G I ——~XNZVC** -

b PC 00001000 SR 0010011100000000 *

e e e e e e *

* * Status
* (¢0100@¢ BRA 00001034 * Window
K e e e e —————————————— *

* SET CONTENTS: *

khkk kR kdkkhkhhhhkkhhhhhhhkhkhhkhkhhhhkkhhkk

The screen is divided into two windows, the Data Window, and
the Status Window. As you cycle through the five screens,
the Data Window changes and the Status Window remains the
same.

THE DATA WINDOW

The top line shows the title of the active screen.

The second line contains the column headings for the data
displayed in the window.

The next fourteen lines show the various DEBUG data
screens. Here you will see registers, memory locations,
disassembled 680@0 instructions, and breakpoints.

THE STATUS WINDOW

The Status Window appears in the bottom eight lines of the
screen,

The first line, which forms the top of the Status Window,
contains the Status Register bit names. These are:

Trace mode
Supervisor State
II Three Interrupt Level bits
Extend bit
Sign (negative) bit
Zero bit
Overflow bit
Carry bit

N<<NZX—=Wwe

Unused bits in the 16 bit Status Register are indicated by a
dash (-).

The second line shows the values of the Program Counter (PC)
and the Status Register (SR).

When you start execution of your code with a CTL-G command,
your program starts (or resumes) at the address shown by
"pC". 1If you are single stepping through your program, the
YpC" value indicates the address of the instruction which
will be executed next. If you hit a breakpoint, the "pC"
value indicates the next instruction to be executed.

You may use the CTL-P command from any Data Window to change
the value of "“PC". For example, if you want to start
executing a piece of test code at address $2208, use €TL-P
to set "PC" to $2208@; then type CTL-G (GO).

The remainder of this line shows the individual bits in the
Status Register. You may use CTL-5 from any screen to
change these.

The next two lines show disassembled 68¢8¢ instructions. The
lower line shows the instruction to be executed next. 1t is
the one which resides at the indicated "PC" address. The
upper line shows the instruction which was last executed.

In the Trace mode, where you use CTL-T to single-step
through your program, the two line instruction window
"scrolls™ up every time you trace one instruction.

The next line in the Status Window shows the available
commands for the currently displayed screen. Whatever you
type at the keyboard is echoed on this command line. The
commands in this window cycle when you hit the ESC key. 1In
this way you can immediately see the available options for
every screen mode without referring back to this manual.

The bottom line of the Status Window looks like the bottom
of a frame most of the time. But when an exception or

breakpoint is encountered, the appropriate message appears
here.

The Program Counter and Status register are included in the
Status Window portion of the screen to allow you to jump
back to your program from any DEBUG display screen. To do
this, you type CTL-G or CTL-T to resume operation at the PC
value shown in the window, or type a new PC value then CTL-G
to resume somewhere else.

Now that we've discussed how the screens work, let's take a
look at each of them in detail.

We'll start with the HELP screen, and use it to describe
most of the command options for DEBUG.

THE HELP SCREEN

HELP
AkXKEY* XX FUNCTION* **kkhkkhkkhkkhhhhkkxkhkhkk
* *
* <~ -> NEXT SCREEN *
* < > SCROLL UP OR DOWN *
* ESC CYCLE WINDOW COMMANDS *
* *
* CTL-B BREAK *
* CTL-D DUMP SCREEN TO PRINTER *
* CTL-G GO TO PROGRAM *
* CTL~P PROGRAM COUNTER (SET) *
* CTL-S STATUS REGISTER (SET) *
* CTL-T TRACE ONE PROGRAM STEP *
* CTL-V VIEW APPLE SCREENS *
* CTL-W SET DATA WIDTH (MEM ONLY) *
* *
*t**********t***t*i***T__S___III_____,XNZVC**
* pPC 00001960 SR 6010011100000000 *
T i i o, e i e 0 e G S S o, o S S 0 s *
* *
* 301680 BRA 80001034 *
T (o a7 At i i S, e i e A S o 5 0, *
* HIT KEY: &

khkkkhkkkkhkkhkhkhkhkhhkhkhkrhkkhkhhbkkkikhhkhkhkhhkkhkxn

The right arrow key moves you “forward" one screen, and the
left arrow key moves you "back" one screen. Notice that the
titles at the top of the screen are arranged like index
tabs, which move in the direction of the arrow keys.

These keys move data in the Data Window. In the MEMORY and
DISASSEMBLY screens, they scroll data up and down.

In the REGISTERS screen, they move the register pointer.
In the BREAKPOINTS screen, they move the breakpoint pointer.

When using "CTL-S" to set the Status Register bits, they move the
cursor which indicates the update bit.

These keys are actually "Shift-comma" and "Shift-period" on
the Apple II keyboard. You don't need to use the shift key.
DEBUG interprets (,) as left caret and (.) as right caret.

"ESC" cycles the command options in the Status Window to
show you the available choices.

CTL-B initiates a 68008 program break. It stops execution
of a program started by CTL-G from DEBUG, and returns
control to the DEBUG program, When a CTL-B break occurs,
the PC value in the Status Window indicates the address of
the next instruction to be executed.

CTL-B functions like a breakpoint you have inserted using
the BREAKPOINT screen, except it is manually activated from
the Apple II keyboard. Unlike a breakpoint, you can't
determine in advance where the break will occur in your
program. CTL-B is usually employed after long periods of
embarrassing silence, when your program seems to be running
but apparently is not doing the right thing.

After using CTL-B, you can single step your program (with
CTL-T) to find out what is going on.

When you hit CTL-D, whatever is on the Apple II screen is
sent to the currently selected output device. Nonprintable
characters, such as the inverse blank used for the frame,

are printed as asterisks (¥*).

If you have not previously initialized a printer card, the

screen dump appears on the Apple Il screen in a rather

bizarre form. Because the character codes on the Apple II -
screen do not represent true ASCII values, they must be

modified before sending them to a printer.

These ASCII values appear as inverse and flashing characters
on the Apple II screen.

If you see this type of display after using CTL-D, either
your printer card is not selected, or it is set to echo
printed characters to the screen. To clear the garbage from
the screen, simply use the arrow keys to go to another DEBUG
screen, then back to the desired one.

CTL-D works only if DEBUG has been started with the
assembler "DBUG" command.

CTL-D prints the entire 24 line DEBUG screen, followed by
nine blank lines. This fits two DEBUG screens onto a
standard 66 line printout.

Appendix D contains a discussion of how the CTL-D function
is implemented.

CTL~G.erreeoenannnn

[S ¢ ¢

CTL-G starts or resumes execution of the 68008 program from
the address shown as "PC" in the Status window. If this is
not the address you want, change it with the CTL-P operation
first.

CTL-P allows ycu to change the value of the Program Counter
displayed in the Status window. The CTL-G (GO) and CTL-T
(Trace) commands start execution of your 68868 program at
this address.

Just as you can specify the starting PC value, you can also
preset the Status Register bits before executing your code.
To save the trouble of entering sixteen ones and zeros every
time, a screen cursor is used to select individual bits.

Use the left and right caret keys to cycle the cursor over
the sixteen bits. To update a bit, type the value 1 or @.
When you are done, press RETURN.

DEBUG remembers the last bit updated, and positions the
cursor over that bit the next time you type CTL-S. This
allows you to quickly change the same bit every time you use
the CTL-S function.

NOTE: You can change the unassigned Status Register bits
(shown with a dash) if you wish, but they have no effect
when the 68068 starts running.

CTL-T lets you trace your program one step at a time. In
Trace, a single instruction is executed, and then control is
returned to DEBUG. Whichever screen you are viewing remains
displayed during TRACE.

For example, if you wish to watch the registers change
instruction by instruction, select the REGISTER DISPLAY
screen and activate Trace. Every time you hit CTL-T, you
will see the register activity.

Note that you can single-step quickly through your code by
holding CTL-T down on the IIe, or using the REPT key (as you
hold down CTL-T) on the II+.

To start the trace operation at any address, first set "pC"
using the CTL-P function, then use CTL-T.

displays. These are shown below:

S0400-S@T7FF Text Screen
$2000-$3FFF Hi-Res graphics Page 1
$4000-S5FFF Hi-Res graphics Page 2

The View command lets you look at the Apple Text Screen and
the two high resolution graphics screens while debugging
your 680808 code. View is a cyclic command. Repeatedly
pressing CTL-V causes four displays to cycle:

DEBUG
TEXT
HIRES Graphics Page 1
HIRES Graphics Page 2

Pressing CTL-F steps the display screens in the reverse
order. This command is not shown in the HELP screen.

DEBUG uses the Text Screen for display. What if you are
debugging a 68698 program which also writes to the text
screen? Whatever your program puts on the text screen would
be wiped out every time DEBUG uses the screen.

To prevent this, if you are viewing the Apple text display
during GO or TRACE, the DEBUG program copies the text screen
data into it's onboard RAM prior to using the screen. Then,
just before your code is executed, the contents of the RAM
are copied back into the primary text screen memory space.

IMPORTANT NOTE: This screen save occurs ONLY if you are
viewing the Apple I11's primary text screen during
debugging.

While you trace your program, DEBUG remembers which display
you last viewed. For example, if you are debugging a
plotting routine which uses Hires screen #2, you can use
CTL-V to display this graphics screen, then repeatedly use
CTL-T to watch the plotting taking place one instruction at
a time.

If you want to check the register contents during such a
trace, you can use CTL-V to take you back to the DEBUG
screen, then press the right arrow key, if necessary, to
view the REGISTERS screen. Using CTL-V again will then take
you back to the HIRES screen display.

When viewing the MEMORY screen, you can display three
different data sizes--byte, word, and long word. Hitting
the W key in MEMORY mode cycles between the three.

THE REGISTERS SCREEN

REGISTERS

*X*REG**CONTENTS **** % % ¥REG* ¥ CONTENTS ** * *
* *
* *
* DO >@0000000 AG 00000000 *
* Dl 00000000 Al 00000008 *
* D2 00000000 A2 00000008 *
* D3 00000000 A3 00000000 *
* *
* D4 00000000 A4 00000000 *
* D5 (0000000 AS 00000008 *
* D6 00000000 A6 00000000 *
* D7 00000000 *
* SSP:A7 00018800 *
* USP:A7 00000000 *
* *
RAKK KRR R KR KKKRKKKRARKD_G__TI] ———XNZVC**
* PC @0@010060 SR 0010011100000000 *
K e e e e e e ot e o e 2 8 e b e . . A2t b 8 et s o e o o *
* *
* 001000 BRA 00001034 *
A e e e e e *
* SET CONTENTS: *

khkkkkkhkkhkkhkkkhkkhkhkhkhkhkhhkhkhhkhkkhkhkkkhkhkkkkkk

This screen displays the eight Data Registers and the nine
Address Registers inside the 68008. Register "A7" is shown
as two registers: "SSP:A7" and "USP:A7". This helps to
clarify the Motorola terminology in which two system stack
pointers have the same name, "A7". (See Chapter 7, "Two
Stack Pointers Named A7").

A single command is used in the REGISTERS screen: “SET
CONTENTS". The left and right caret keys move a pointer to
each of the registers. To change a register value, simply
type in the new value, followed by RETURN.

If you type more than 8 digits, the excess leading digits
are ignored. 1If you type fewer than 8 digits, the remaining
leading digits are set to zero. For example, typing the
value "1" and RETURN enters the value "00@060¢01". All data
is in hexadecimal. You do not have to supply a leading

ﬂ$“.

When you use GO or TRACE, the values shown on the REGISTERS
screen are copied into the 68808 registers prior to
beginning program execution,

THE MEMORY SCREEN

This screen allows you to scan the 68008 memory space.

MEMORY
***ADDRESS **CONTENTS **ASCI I *COMMENT ** % * *
* *
* FFFFF@ *kkkkkkk *
* FFFFF4 kkkkkkkk *
* FFFFF8 hhkkkkkkk *
* FFFFFC kkkkkkkk *
* *
*> 0000090 00018800 @AHR *
* *
* 000004 00010084 @AED *
* ¢00008 OG0002F4A @@/J *
* 00000C OGOBO2F6A @@/j *
* Q00010 @00@2F76 @Q/v *
* 000014 @0002F7C @Q/| *
* *
**********************T—S—-III—-—-XNZVC**
* PC @@00100¢ SR G0100911100000000 *
T e ot i o o, o 5 s s 1 o e, A S S e o e *
* *
* 001000 BRA 90001034 *
K e e e e e e e e ot e o e e e *
* SET CONTENTS: *

Ahkkkkhkhhkhkhhhkhkhkkkhkhkhhhhhhhkhhhkhkhrhkhhkhkkkhkkk

This

includes all of the Apple memory, as well as the Q-68 board

ROM and RAM.

with this screen.

The
The

The
the

memory data is shown in 32 bit (long) form.
data width, use CTL-W.

width in the following sequence:

Long--Word--Byte--Word--Long--Word--Byte--Word,

DEBUG remembers the data size for the MEMORY screen.

You may view and alter the contents of memory

">" and "<" keys are used to scroll data up and down.
RETURN key also scrolls the screen up.

To change
This cycles the displayed data

(etc.)

If you

have selected Word length (for example) and leave the MEMORY
screen, the data size will still be “word" next time you
select the MEMORY screen.

Memory data is displayed and entered in hexadecimal.

leading "$" is required.

No

The contents of non-existent memory are shown as "***x"
The ASCII column is blank for non-existent memory.

Pressing the ESC key selects three commands:

1. SET CONTENTS Insert data into a memory location.

2. SET ADDRESS Select a new memory location.

3. SET COMMENT Type up to 10 characters which "mark" a
particular memory location.

SET CONTENTS lets you type in new memory values (in hex).

SET ADDRESS allows you to view/change a different portion of
memory. This is the command which appears whenever you
select the MEMORY screen.

SET COMMENT allows you to "tag" certain memory locations
with words of your choice. These comments are stored in a
table and shown anytime the corresponding memory locations
are displayed. Up to sixteen ten-character comments may be
stored.

One use for the comments is to assign labels to breakpoint
addresses. Then when the breakpoint is hit, the word (which
might say something like "delay") will appear on the

screen.

THE DISASSEMBLY SCREEN.

DISASSEMBLY
*ADDRESS **OPCODE**ARGS *** * * * COMMENT ** * * *
* *
* *
* *
* *
* *
* *
*>¢01000 BRA 00001034 *
* 001004 BRA 00001022 *
* 001608 BRA 000OLAF6 *
* §g160C BRA gOO0LAFA *
* 091610 MOVE.W #@6EA,D7 *
* 001014 LEA 00018092 ,A0 *
* gg101A CLR.B (A@)+ *
* *
*********t************T__S___III___XNZVC**
* PC 00001000 SR 00l0011100000000 *
TR s i i 5. . o s 3 e e e 1 S, i i S i S *
* *
* 001600 BRA 80001034 *

SET ADDRESS:

kkkhkkhkhkhkhhkkkhkhhkhkhhkhkhhkhhhkhkrhkhhkhkhkkhkhhkkhkkk

Two commands apply to the DISASSEMBLY screen, "SET ADDRESS"
These function exactly as in the MEMORY

and "SET COMMENT".
screen.

The ">" key (or RETURN) steps the display up to advance one

disassembled instruction.
instruction back in memory.

The "<" key moves the display one
As with all disassemblers, you

must start the display on a legal instruction address for

the listing to make sense.

Memory values which do not

correspond to legal 68@@@ instructions are shown as "?222?".

The scroll keys allow you to move up and down in the

disassembled listing.

address and works forward one less instruction.

When you scroll down (moving
backwards through memory) DEBUG goes back to your starting

You'll

notice that the further away you are from the starting

address, the longer the backwards scroll takes.

To speed it

up, simply specify a DISASSEMBLE start address closer to the
code you are examining.

A POINTED ISSUE

When you use the SET ADDRESS command in the MEMORY or the
DISASSEMBLER screens, should the display address for the
other screen change to reflect the new display address?
This was a hotly debated issue among the Qwerty staff.

One school of thought has it that you want the display
addresses to "“track”. When you scroll one of the screens,
the other should follow it in memory, even though it is not
currently displayed.

The other view is that you might want to watch a particular
section of memory as you trace program execution. A good
use of this feature would be to watch a stack in operation.
For example, suppose the stack is at $1840¢, and your
program is at $1008. If you are watching your program on
the DISASSEMBLER screen and then switch to the MEMORY screen
to look at the stack, you DON'T want the memory screen to
show you your program at $160@. You want it to stay at
$18400, where the stack is.

Both points are valid, so we have provided a mechanism to
operate both ways. There are two rules:

1. Whenever you set the display address to the same value
for the MEMORY and DISASSEMBLER screens, the MEMORY
display address tracks the DISASSEMBLY display address.
In other words, the MEMORY screen "scrolls" when you
scroll the DISASSEMBLY screen, even though you are not
viewing the MEMORY screen.

This is the way the screens are initially set in DEBUG,
with the initial display address for both screens set to
51000,

2. Whenever you set different addresses for the two
screens, they independently show their own display
addresses.

An inverse "L" appears in the lower right corner of the
Status window when the display addresses are locked
together.

THE BREAKPOINTS SCREEN

BREAKPOINTS
** A g X ADDRESS **VALUE**COUNT *COMMENT ** * % %
* *
* *
* *
* > 0 00001000 FFO@ 0000 COMMENT #1 *
* 1 *
* 2 *
* 3 *
* 4 *
* 5 *
* [*
* 7 *
* *
* *
* *
**********************T—S——III—-—XNZVC**
* PC 00001000 SR 0010011100000000 *
T o s o i e e i o 51 e s e s S S S o A i 61 *
* *
* §p1608 2?2?27 COMMENT #1 *
S *
* SET ADDRESS: *

khkhkkhhkhhhhhkhhkrhhkhkhkhhkhhhkkhkhhkhkhkkhhhhhkkhk

There are three command choices in the BREAKPOINTS screen.

SET ADDRESS.

Set the address at which a break is to occur.

SET COUNTER

The count value (in hex) tells DEBUG how many times to skip
over the break address before actually doing a break
operation.

The Counter value is convenient for testing repetitive
subroutines. You might want to see the result of a
subroutine after the hundredth time through, for example.
In this case, set the counter to 63 (hex for 99).

As the breakpoint address is encountered, the onscreen
COUNTER value is decremented. When it hits zero, the
program break is initiated.

SET COMMENT

This is the same "SET COMMENT" function as used in the
MEMORY and DISASSEMBLY screens. The comment appears in the
Status Window when the breakpoint is hit.

TRAP #15

When you set a breakpoint, DEBUG goes to the address you
have specified and retrieves the 16-bit word it finds there.

The "Value" column in the BREAKPOINTS Data Window shows this
16-bit word.

When you use CTL-T or CTL-G to begin execution of your
program, the word at each breakpoint address is replaced
with a "TRAP #15" instruction. When you hit a breakpoint,
the original value at the breakpoint address is restored.

Therefore, you will never see the TRAP #15 instruction used
for breakpoints when you disassemble your program, even if
breakpoints are set.

The “TRAP 15" instruction used by DEBUG is stored in the
first word of onboard Q-68 RAM ($188¢¢). You can change
this to another trap value if you wish, by replacing these
two bytes with a different TRAP instruction. This
replacement must be done by your test code, after DEBUG has
started.

EXCEPTION VECTORS

DEBUG installs nine exception vectors when it is started.
The vector addresses point to routines within DEBUG which
display the exception type when any of the nine is
encountered. The following table shows the vector types and
the 68608 addresses at which DEBUG installs them:

$008 Bus Error

s@@c Address Error

$010 Illegal Instruction
$014 Divide by Zero

$018 CHK Instruction
$g1cC TRAPV Instruction
$029 Privilege Violation
$028 1010 Instruction
S@2C 1111 Instruction

(Remember that to translate these to Apple 11 addresses, add
$800) .

When any of these exceptions happens, DEBUG shows the
corresponding message on the bottom line of the DEBUG
screen. The message appears no matter which DEBUG screen
you are viewing at the time. You must be viewing a DEBUG
screen, however, to see the message--it will not appear on
the Apple text or HIRES screens.

If you wish to override these vectors with your own program,
simply add code to write new values (addresses) to the
vector locations. Remember, though, every time you start
DEBUG (with the "DBUG" command), the above DEBUG message
vectors are (re-)installed.

REMOTE MODE

DEBUG has a remote mode, in which you can write APPLESOFT
BASIC programs that mimic the Apple II keyboard. 1In the
Remote mode, DEBUG looks at location S$@OFD for keyboard
input, rather than the normal $C@@40.

The Remote mode is started by executing a call or jump to
Apple location $303 (771 decimal). The "Q-68.STARTUP.BIN"
program must be in memory for this to work. Appendix D
gives details on how to use the Remote mode.

DEBUG MEMORY USAGE

DEBUG is contained in the 8 Kbyte EPROM on the Q-68 board.
The first 132 bytes of the EPROM contain the self-test
program described in Chapter 5. DEBUG starts at $10084 and
ends at $11FFF, the top of EPROM memory.

DEBUG uses the 2 Kbyte RAM on the Q-68 board for all working
storage. The SSP is located at $18600, and the 68008 stack
works downward from there. The top two pages of onboard
RAM, from $18660 through $187FF, are unused by DEBUG. You
may use these 512 bytes for your own programs.

When you start DEBUG, the value of the SSP shown on the
screen is $188@8@. If you do not initialize the SSP yourself
(from the Registers screen or in your program code), your
supervisor stack will be at $1800¢ (a good place for it, by
the way).

If your code is going to use the USP, be sure to initialize
the USP register to point to the place in memory which you
want to locate the user stack. (Section 8.4 discusses stack
pointers).

The only Apple memory used by DEBUG is the TEXT screen, from
$400 through $7FF. DEBUG updates this screen by writing the
memory directly.

USEFUL DEBUG ROUTINES

DEBUG contains some 68000 subroutines which you can call
from your own programs. These routines let you disassemble
one line of 68000 code, display hexadecimal numbers on the
Apple II screen, and make the breakpoint "zip" sound.

DISASSEMBLE ONE LINE OF 68¢@0 CODE.

Initial Conditions:

Register A@ is loaded with the address of the the first byte
of the instruction to be disassembled. This must be an even
address (not checked by this subroutine).

Calling Address: S$10E4A
Result:

The disassembled code is written to a 64 byte buffer
starting at address $181CE. This buffer will contain a
replica (in Apple display character codes) of the result you
see on the Apple screen when 68000 code is disassembled.

For example, if you put the address of a non-68000
instruction in A@ and call this routine, you will find the
display codes for the address, two spaces, and four question
marks in the buffer.

Note that the 64 byte buffer can accomodate the maximum
length 68000 instruction. DEBUG copies the first 4@ columns
of this opcode onto the 4@-column Apple screen.

Exit Conditions:

For a legal opcode, A@ is advanced to the byte following the
disassembled instruction. This will normally be the
starting byte of the next instruction. Repeated calls to
this routine will thus disassemble sequential instructions
without the necessity of reloading A@ every time.

For an illegal opcode, A® will be advanced two bytes.

Register Usage: all except A7

PUT MESSAGE ON APPLE 4¢ COLUMN SCREEN
Initial Conditions:

Al: Screen starting address ($400-S7FF)
A3: sStart of message (Apple display codes)

Calling Address: $11AB8 for normal video
$11AC8 for inverse video
$11ACE for flashing video

Result:

The message is written to the Apple text screen.

The message string must have all character codes except the
last one stored with the MSB set to 1. (This is done in the

Macro Assembler by preceeding the string with a "-"). The
last character code of the message has its MSB set to @.

This is the "terminator" which signals the end of the
message.

Exit Conditions:

Al: One byte past the end of message on the screen.
A3: One byte past the terminator.

NOTE: DEBUG makes no check for messages that spill off the
display. You need to make sure this does not happen. This
would happen, for example, if you try to put a 28 character
message starting at column 30.

Running off the screen can have disasterous results in Apple
II operation. For example, you could overwrite peripheral
card scratch locations.

Register Usage:

Normal display: D@

Inverse: D@, D6
Flash: D@, D6

DISPLAY HEX AND BINARY DIGITS

Initial Conditions:

D@: data (right justified hex digits or 16~bit binary)
Al: starting screen address ($S4008-S$7FF).

Calling Address:

One hex digit: $11BEE
Two hex digits: $11BF4
Four hex digits: $11BFA
Six hex digits: $11C69
Eight hex digits: $11C@6
16-bit binary: $11c24
Result:

Value displayed on screen.
Exit conditions:

Al: next display address

Register Usage:

Hex: D@, D2, D3
Binary: D@, D2

ZIP SOUND

Initial Conditions: none

Calling Address: $11EEC

Result:

Sound heard when you hit a breakpoint.
Exit Conditions: none

Register Usage:

D4, D5

/ Self-Test

1S9L-3PS

Chapter 5 -~ SELF TEST

This section tells you how to use the self test feature of
the Q-68 board. We'll describe a test procedure which uses
the onboard diagnostic program. For every symptom, we'll
tell you which Integrated Circuits are suspect. All IC's on
the board are in sockets, so they are easy to replace.

CAUTION: When removing or inserting IC's be sure that the
power to the system is OFF. Changing components with the
power on can cause multiple component failures, and severely
aggravate any problems you may be experiencing.

PRELIMINARY TESTS

Before testing the Q-68 board, you should answer the
following questions:

1. Does your Apple II run with the Q-68 board removed? If
not, you have a system problem which should be fixed
before troubleshooting the Q-68 board.

2. 1Is the Q-68 board in the correct slot? The software
supplied on disk assumes slot #4 operation. You can use
a different slot if you reconfigure using item 1 of the
menu you see when you boot the QPAK-68 disk.

3. 1Is the board pushed all the way down in the slot
connector? If not, try removing and reseating the
board.

4. Are there two little jumper plugs in the upper right
corner of the board? Compare your board with the board
photo at the end of this section. Your board should
have jumper plugs in positions 2 and 3.

Still with us? Too bad. It appears that something might be
wrong with the Q-68 board.

Since the board was thoroughly checked out and burned in at
the factory, the most likely cause of a fault is an IC that
went south. The following procedure takes you through a
procedure which is designed to isolate a bad chip.

This test procedure assumes a few things. First, that you
don't wish to take the time for a warranty repair, but

prefer to try to fix it yourself. Second, that you can

remove and replace socketed IC's without mangling the pins.

And third, that you have access to TTL parts, and can S—
replace certain ones which the procedure reveals to be

suspect.

THE OBLIGATORY WARRANTY STATEMENT

pon't be afraid that using the following test procedure will
void your warranty. As long as you put the board back into
the shape that you received it before sending it back, we'll
honor the warranty.

The warranty will be INSTANTLY VOIDED, however, if you touch
the board with a soldering iron, or manhandle it. It
doesn't take much scuffing to break the delicate PC board
traces.

The main thing is to get you back on the air, so let's get
started.

NOTE: When the procedure calls for removing an IC, use the
following method:

Use a small blade screwdriver to pry up one side of the IC
just a little. Then pry up the other side of the IC just a
little. Alternate your prying on both sides to "rock" the
IC out of the socket. This technique prevents bent pins, so
the IC can later be reinserted. Make sure that you don't
mar the surface of the circuit board with your screwdriver.

TEST PROCEDURE

1. Turn off the Apple.

2. Remove the (-68 board.

3. Look at the upper right corner of the board. You'll
find a six pin header, with two little jumper plugs
installed. The plugs should be in positions 2 and 3.

Remove the jumper plug from position 3. There should o

i
i
[28]

now be a single jumper plug in the middle (#2)
position.

4., 1If there is a board in slot #4, remove it. Then install
the Q-68 board into slot #4. Make sure the board is
pushed down all the way.

5. Turn on the Apple. You can boot DOS if you wish,
although this is not necessary. You should get to the
APPLESOFT prompt (]).

6. Type CALL -151 (ret). This takes you to the Apple II
monitor.

Now you are going to issue some control commands directly to
the Q-68 board. The next step attempts to run the 68008
system using onboard Q-68 board resources only, When you
removed the third position jumper, you enabled the onboard
test programs.

1f your Apple is dead, and you can't get this far, replace
all the chips listed in step 7.

7. Type C@C1l (ret). This turns on the 68008.

Look at the red and green lights on the Q-68 board. The
RED one should be on, and the GREEN one should be
blinking. If all is well, proceed to step 8.

If the RED light is not on, replace the following IC's
and try again:

A2 74LS74
Cl 74LS @5

If the GREEN light is not flashing, we have a major
problem. An OFF Green light means the processor is not
running.

First we'll remove some IC's and retest. Turn off the
Apple, and remove the Q-68 board.

Remove the following IC's (make sure A2 and Cl are
installed, if you used the previous step):

A3 74L5244

B3 74LS373
A4 T4LS 244
AS 74LS 244
Ccé 74LS505
D5 74LS393
B6 74LS 74

NOTE: The IC's above the dotted line connect to the Apple
ITI bus, so if the Q-68 board hung up the Apple, these are
likely culprits.

How's that for a minimum 680@¢8 system? You should have only
ten IC's remaining on the Q-68 board. Now plug the Q-68
board back into the Apple and try steps 4, 5 and 6 again. If
the green light now flashes, one or more of the chips you
removed might be bad--try replacing them,

I1f chip replacement produces the flashing green light,
proceed to step eight., 1If not, carry on here.

We're down to two possibilities. Edither the PC board itself
is messed up (check carefully for scratches and bent-under
IC pins), or one of the remaining IC's is bad. Replace
those if you can. Six of them are garden variety TTL, which
you probably can find if you have access to TTL chips. The
other four are available from Qwerty:

Cc3 MC68008 CPU

B2 2764 EPROM with DEBUG 1.0
c2 2 Kilobyte RAM

B4 PAL (QT-3)

If you're here, rather than step 8, plug the chips back in
and send the board back to us for repair.

NOTE: The chips all insert so the lettering on them is
rightside up.

Welcome to step 8! If you got this far, your system
works in a standalone mode. Now we'll extend the test
to include the Apple II memory.

The Q-68 board should be running now, with the red light
on and the green light flashing.

There should be a single jumper plug in the middle (#2)
position.

From the Apple keyboard, at the monitor prompt (*), type
COC3 (ret). This interrupts the 68008, and sends it to
a program which rapidly cycles the Apple HIRES screen.
The red light should be on, and the green one should now
be off (stopped flashing).

NOTE: The 4 digit Hexadecimal number in the lower right
corner of the Apple II screen is the “checksum" of the
Q-68 EPROM., It should match the value written on the
EPROM label.

Is the screen flashing like vertical window shutters in a
storm? If so proceed to step 9.

If not, there are several possible conditions:

I1f the screen is cycling, but there are not clear vertical
divisions (for example if random dots litter the screen)
replace A3, a 74LS244.

1f the screen just sits there, replace the following IC's:

A3 74LS 244
A4 T4LS 244
AS 74LS 244
B3 74LS373
Ccé 74LS@5
B5 74LS74
B6 74LS74

If replacing these IC's doesn't fix it, send the board back
for repair.

9.

If you're here, the screen is cycling. There should be
a single jumper plug in position two. Take the jumper
plug which you removed from the third position at the
beginning of this procedure, and install it at position
1, while the board is running. This forces a watchdog
timer BERR. (Read section 7.3 if you don't know

what BERR is).

As soon as you install this jumper plug, the screen
should freeze, and the green light should begin
blinking. If so, you have successfully tested/fixed the
Q-68 board. 1If not, try replacing the following IC's:

D5 74LS393
ceé 74LS@5

If this doesn't fix it, send the board back for repair.

If you have fixed it, reinsert the jumpers into positions 2
and 3, and reinstall the board.

Appendix

xipuaddy

Appendix A

Macro Assembler Operation and Memory Usage

CONFIGURATION REQUIREMENTS

The Macro Assembler runs in any Apple II, or Apple 1I plus,
or Apple IIe with 48K of RAM. A language card is
recommended. You will need at least one standard Apple
disk.

CONTENTS OF THE DISK

The disk you received with your assembler is a standard
l6-sector DOS 3.3 disk. 1t can be copied with Apple's disk
copy programs, and the individual files are copyable with
FID.

There are tbree versions of the S-C Macro Assembler on the
disk. "ASM.LC" is the standard (language card) version,
which loads at $D6@O. A second file, "ASM.LC2" is a small
segment which loads into the alternate 4K bank of the
language card.

The type "T" file named "QLOAD LCASM" is a control (EXEC)
file used to lcad the language card files.

A second version, called "ASM.MB" (for "motherboard") runs
without a language card. 1t loads at address $3000,

A third version, called "ASM.MB.40@9g" is included to allow
programs which use the HIRES screen #1 to run without a
language card. It loads at $4000, and thus is clear of the
HIRES screen #1 at $20¢@-$3FFF.

This HIRES screen utilization is provided at the expense of
4 Kilobytes of memory which would have been used for source
code and symbol table storage (as with ASM.MB).

The best place for the assembler is in a language card, so
that maximum "motherboard" memory can be utilized, including
the two HIRES screens.

A number of "I" (assembler source) files are provided on the
disk to illustrate 68000 properties described in the second
section of this manual.

An Applesoft program called "REMOTE.DEMO" illustrates the
remote mode of the Debugger. To run this one, boot the
system, choose item 5, and then type, "RUN REMOTE.DEMO".

The 6800#% source program called, "OPCODE.TEST.680@6" can be
used to exercise the assembler. You might want to assemble
and print this program to get aquainted with 68800 code
syntax.

MEMORY USAGE

The language card version of the Macro Assembler program
occupies $D@@@ through $F7FF in memory. The symbol table
begins at $30@6 and extends upward; your source program
begins at the bottom of DOS ($9660 in a 48K machine) and
extends downward.

This leaves an 8 kilobyte space from $1000-$2FFF to store
object code.

The EXEC file which loads the assembler into the language
card configures it so that DOS thinks of it as the alternate
to the language in ROM on the mother board.

During source program entry or editing, memory usage is
monitored so that the source program doesn't grow so

large as to overlap the symbol table. Overlapping will
cause the "MEM FULL ERROR" message to print. During
assembly, memory required by the symbol table is monitored,
to prevent the symbol table from overlapping the source
program. Overlapping will generate the "MEM FULL ERROR"
message and abort the assembly.

In addition, memory usage by the object program is
monitored, so that it will not destroy the source program,
DOS, the S-C Macro Assembler, the symbol table, or switch
any 1/0 addresses. Therefore, if the object program bytes
are directed at any memory address between $308¢ and the top
of the symbol table, or any address above the beginning of
the source program, the "MEM PROTECT ERROR" is printed and
assembly is aborted.

If you are using macros with private labels, the private

label table extends from $OFFF downward toward $08@@. The
private label table is also protected during assembly. Each
private label uses five bytes in this table.

CAUTION: Location $800-$BFF are used to store 68¢08
exception vectors. The top half of this area, from
$OAGQ@-SPBFF correspond to interrupt vectors, and probably
won't be used by your programs. So in effect the usable
space for private labels is from $0A@@ through S@FFF.

The assembler uses many locations in page zero during
editing and assembly. Your programs should not tamper with
page zero locations. Remember that Apple 11 page zero
locations correspond to 68008 address $08¢@ locations.

Page one ($10@0-$1FF) is used both as a stack and as storage
for various items, The high addresses in page one are used
for the stack. The low end is used for a symbol buffer and
for the pointers to the 27 hash chains used in storing the
symbol table. The block from $17¢ through S$1BF is used for
holding search and replace strings by the editor, and for
.TI titles during assembly.

Page two ($200-2FF) is used as the keyboard input buffer.

The high end of page three ($3D@-3FF) is used by DOS and by
the assembler. You must not change any bytes between $3D#@
and $3EF. $300-3CF is used by the "Q-68.STARTUP.BIN"
program, which is described in Appendix D.

Locations $400-7FF are used by the Apple II as the text
screen buffer. 32 of these bytes are unused by the screen.
They are used instead as "scratch" locations by peripheral
boards such as the disk controller and printer interface
boards.

Locations $80@-$863 are used to store the 68¢@#8 exception
vectors.

Private labels, used in Macros, are stored from SFFF
downward. If you use private labels, you need to insure

that the private label table does not extend down into your
68008 startup vectors. Each private label uses 5 bytes.

ROM USAGE:

The Assembler takes full advantage of subroutines inside the

Apple Monitor ROM. Here is a list of all the subroutines
used:

F941 Print 4-digit hex value from A,X

F94A Print (X) blanks —

FB2F Set text mode, full screen window
parameters

FBF 4 Advance cursor

FC1l9 Backspace cursor

FCla Move cursor up one line

FC22 VTAB to current CV value

FC2B An RTS instruction

FC42 Clear to end of page

FC58 Clear screen, Home cursor

FC66 Move cursor down one line

FCI9C Clear to end of line

FCAS8 Delay

FD@C Read next input character from keyboard

FD18 Read next input character through $38,39

FDB84 Add char to input line

FD99 Print (Y,X) in hex with dash

FDDA Print (A) in hex

FDED,FDF@ Print (A) as ASCII character

FE@O Display memory in hex

FE2C Move block of memory

FE89 Set input to keyboard

FE93 Set output to screen

FECD Write block of memory on tape -

FEFD Read tape into memory

FF2D Print "ERR", ring bell

FF3a Ring bell

FF69 Enter Monitor for MNTR command

FFA7 Get hex number

FFBE Process monitor command

FFC7 Clear monitor mode byte

FFCC Table of monitor commands

Appendix B

Assembler ERROR MESSAGES

If you make a mistake, the MACRO Assembler will probably
catch you. Here are the error messages you may see.

**% SYNTAX ERROR There is a misspelled command or
bad line number.

*** MEM FULL ERROR Either you do not have enough
memory for the source program,
or for the source plus the
symbol table or a tape read
error has occurred.

**% MEM PROTRCT ERROR Your program tried to
assemble into an area of
memory occupied by the
assembler, the symbol table,
or your source code. Use the
.TA or .TF directives.

*** RANGE ERROR The relative offset for a branch
instruction was not in range

*** NO LABEL ERROR There was no label with an
equate (.EQ) directive.

*** BAD OPCODE ERROR The opcode field does not
contain a valid opcode or
directive.

*** EXTRA DEFINITION ERROR The same label was defined
more than once.

***x UNDEFINED LABEL ERROR A symbol in the operand field
is not defined.

*** BAD SYMBOL ERROR A character in the label field
is not a legal character for a
label.

*** BAD ADDRESS ERROR This one is a catch-all for

syntactical errors in the
operand expression, as well as
for use of a particular

address mode with an opcode
that does not support that
mode.

*** VALUE > 255 ERROR A local label is more than 255
bytes from its normal label.

*** NO NORMAL LABEL ERROR A local label is used with no
normal label present

*** NESTED .IN ERROR There is a .IN directive within
an included file,

*** MISSING .DO ERROR There is a ,FIN or .ELSE
without a corresponding .DO.

**% _DO NEST TOO DEEP ERROR .DO - .FIN blocks are nested
more than eight levels deep.

*** KEY TOO LONG The search string in a command
is longer than 38 characters.

*** REPLACE TOO LONG ERROR The REPLACE command tried to
create a line longer than 248
characters.

*** NO MACRO NAME ERROR The .MA directive has no name in
the operand field.

*** UNDEFINED MACRO ERROR The macro name has not been
defined.

*** BAD MACRO PARAMETER ERROR The character following a square
bracket (]) must be a number
(1-9) or a (#).

When an error is discovered during assembly, the error
message is printed along with the offending line. The
assembler then continues its pass, looking for more errors.
At the end of the pass it prints "XXXX ERRORS IN ASSEMBLY",
where XXXX is the number of errors it found in that pass.

If there are any errors discovered during pass one, assembly
does not continue into pass two. Some errors are
catastrophic, and abort assembly without continuing to the
end of the pass.

Appendix C

Quick Check of the (¢-68 Board.

This appendix gives you a quick check procedure for the Q-68
board. The steps outlined below are exactly those used at
the factory to perform a quick go/no go check of (-68 boards
prior to burn-in.

If you don't get the expected results, refer to Chapter 5,
"Self Test"™ for comprehensive test information,

1.

Remove the jumper plug at positicn 3 of TR1 (upper right
corner of the board). There should be a single jumper
plug at position 2,

Turn on the Apple II. 1If you're really in a hurry,
hit RESET before the disk boots. 1t doesn't matter
whether the disk boots or not. All you need to do is
get to the BASIC prompt "%,

From the "]" prompt, type CALL -151 (RETURN). This
takes you to the Apple Monitor, signified by the "*"
prompt.

Now you need to know into which slot the Q-68 board is
plugged. We'll assume slot #4, and show the values to
type in parentheses. If you have it in a different
slot, use the following table.

Slot Base Address (BA)

5C09¢
SCoAQ
SCOBQ
scece
SC@D@
SCOEQ
SCera

=N LT B G N

Type BA+l1 (C@Cl). The red light on the Q-68 board
should turn on; the green one should start blinking.

Type BA+3 (COC3). The red light should stay on; the
green one should turn off; and the Apple screen should
cycle, accompanied by a ticking sound from the Apple
speaker.

In the lower right corner of the Apple screen, you should
see a four digit hexadecimal number. This is the checksum
of the onboard EPROM. The checksum is calculated by doing a
16-bit addition of all 8-bit bytes in the EPROM, and
ignoring overflow. This checksum number should match the
number printed on the EPROM label, 1If it doesn't, you've
probably got a bad EPROM.

7. While the screen is cycling, plug the shorting plug you
removed from TBl position 3 into position 1. This
places plugs at positions 1 and 2. The screen cycling
should stop, and the green light should resume
blinking.

Step 7 forces a Bus Error, and thus checks operation of the
watchdog timer on the Q-68 board.

8. Reinstall the jumper plug at position 3 of TBl. There
should now be two plugs, at positions 2 and 3. Position
1 should not have a jumper plug. You can change these
plugs with the power still on, if you possess the manual
dexterity. Otherwise, turn off the Apple and
temporarily remove the Q-68 board to reinstall the
jumpers,

Appendix D

Starting Up QPAK-68

When you boot the QPAK-68 system disk, a number of things
happen.

First, the file "HELLO" is automatically loaded and run.
This program is a one-line "EXEC" program:

19 PRINT CHR$(4); "EXEC X"

An "EXEC" file is run exactly as if you had typed the
commands contained in the file at the Apple II keyboard.

Now the BASIC program "X" is run ("EXEC'ed", in Apple
jargon). This program does two things:

(1) POKE 104,96: POKE 163,1: POKE 24576,0

This moves the start of BASIC program text storage from $8¢0
to $60600., This is done so that you can use the Q-68 board
and BASIC together. If the BASIC program storage were left
at $80¢, it would wipe out the Q-68 board startup vectors.

(2) RUN QPAK.STARTUP

The Applesoft program, QPAK.STARTUP is now loaded and run.
This program puts up the five item menu screen which allows
you to reconfigure the system for a different Q-68 board
slot, start DEBUG, start the Macro Assembler, or exit to
BASIC.

The first thing QPAK.STARTUP does is to load the binary
file, "Q-68.STARTUP.BIN" at address $300-$3CF. This program
must be in memory for the Q-68 board to function correctly
with the Macro Assembler or with BASIC.

Full listings of QPAK.STARTUP and Q-68.STARTUP.BIN are
included at the end of this Appendix.

Q-68.STARTUP.BIN does the following chores:

1. It establishes four fixed Apple 11 entry points for Q-68
board control:

$30@----Starts the Q-68 board (running the DEBUG
program) and then enters a 6562 program loop which
checks for CTL-D (dump the Apple II text screen),
and CTL-B (Break 68008 program execution). This
routine is jumped to when you type "DBUG" from the
Macro Assembler.

$3@3----Remote Operation. Call this address from a
BASIC program (CALL 771) to fire up DEBUG in the
Remote mode. After setting up for remote
operation, the routine returns to the caller
(usually a BASIC program). No checking is thus
done for CTL-B or CTL-D.

$3@B-~~--Start the Q-68 board and exit. The Apple
I1 program that did the JSR $30B continues to run,
simultaneously with the Q-68 board. This routine
is called when you type "QON" from the Macro
Assembler.

$3C2----Turn off the Q-68 board. It is sometimes
useful to reset the Q-68 board from a BASIC
program, For example, the Q-68 board must be off to
do a disk access.

2. It contains the 6502 code to dump the text screen to a
printer.

3. It contains the 6502 code to check the Apple I1I keyboard
for a CTL-B, and upon finding it, initiating a 68008
program "Break".

Three instructions in the Q-68.STARTUP.BIN program control
the Q-68 board. These instructions will be coded
differently depending on which slot the (Q-68 board

occupies.

$30B
$354
$3C2

These

BIT $C@Cl1 ;Turn card on
BIT $COC3 ;Interrupt the card
BIT $C@CO ;Turn card off

instructions are initially set for slot #4 operation.

If you put the Q-68 board into another slot, the three
instructions must be modified to account for the different

slot.

This is done for you when you choose item 1 ("SET

Q-68 BOARD SLOT") of the boot menu. The three locations are
changed to reflect the chosen slot, and then
Q-68.STARTUP.BIN is saved back to disk so that you won't
have to reconfigure again.

HOW CTL-D WORKS

When you type CTL-D from the DEBUG program, the 68808 does
one thing. It places an asterisk (*) in the lower right
corner of the text screen. This is a signal to the 6502
Q-68.STARTUP.BIN program to print the screen.

The 6502 now takes over. The screen printing is done in two
steps. First, the text screen is copied to $0C@0-$SOFFF.
Second, it is sent one character at a time to the DOS
printer vector location ($9EBD).

This DOS vector is set up by the Apple II when you
initialize your printer card. You do this from BASIC or
from the Macro Assembler by typing "PR#N" (N is the slot
number of your printer card).

Why copy the screen to another RAM area first?

Because your printer card might be set up to "echo" the
printout to the text screen. This has the unfortunate
effect of scrolling the screen whenever a carriage return is
encountered. Trying to print a screen as it scrolls out of
existence produces garbage on the printer,

So whether or not your printer card echoes to the screen,
the data sent to the printer is accurate, since the memory
area $@CO@-$OFFF never scrolls.

You'll know if your card is set for "video echo". As the
printer prints, you'll see a screen of inverse and flashing
garbage slowly devour the DEBUG screen you are printing.
When the printing is finished, simply cycle the DEBUG window
back to the one you want, and the garbage will disappear.

HOW CTL-B WORKS

When CTL-B is read from the Apple II keyboard port (location
$C@@0), the 68009 AUTOVECTOR 7 address (S87C-$87F) is loaded
with $1088C, the "break" entry point for DEBUG. The Q-68
board is then interrupted by doing a "BIT C@x3"

instruction. "x" is the slot number plus 8.

NOTE: If your 68008 program uses the Apple II keyboard, and
you have started DEBUG by typing "DBUG" from the assembler,

remember that it will be “competing" with the 6562 in
reading the keyboard strobe to look for the "CTL-B" code.

REMOTE MODE

Anything you can do with DEBUG from the Apple II keyboard,
you can also do from a BASIC program.

When you activate the Remote mode (with a CALL 771 from
BASIC, for example), DEBUG looks at location $@@FD (decimal
771) for "keyboard" input, rather than the Apple II
keyboard. DEBUG interprets bit 7 as a strobe bit. When bit
7 is high, DEBUG reads the value at $FD and processes it
exactly as if it had been read from the keyboard. When
DEBUG is ready to accept another "key", it clears bit 7 of
location $FD.

When the Remote mode is first entered, a "dummy" value of
SFF should be written to $FD. Then the 6502 program should
wait for bit seven to be cleared (in other words, wait for
the SFF to change to $7F) before sending "keystroke" data to
DEBUG. This startup protocol insures that DEBUG has
finished all startup housekeeping before accepting remote
input.

To get a feel for the power of this mode, boot the system,
and choose item 5, EXIT TO BASIC. Then, type RUN REMDEMO.

Sit back and watch.

What a great way to teach 68608 operation! Here are some
hints you can use in your own BASIC programs:

1. Start up the board with a CALL 771 statement.

2. You send a character to DEBUG by doing a POKE (253,val)
where "val" is the keyboard code PLUS 128, The high bit
must be set for DEBUG to recognize that a new character
is being sent.

3. Use CHRS(150) (CTL-V) to switch from the DEBUG screen
to the BASIC text screen. Do this before you put up
messages using PRINT statements.

4., Use CHRS(134) (CTL-F) to go back to the DEBUG screen, or
send three more CTL-V commands to cycle to HIRES screen
41, HIRES screen #2, then back to DEBUG screen.

5. DEBUG indicates that it is ready for another character
by clearing bit 7 of address 253 (decimal).

The following BASIC subroutine sends one character to DEBUG,
and then waits for it to be accepted before proceeding:

14 POKE 253,V
2@ IF PEEK(253)>127 THEN 20
3¢ RETURN

Here's another handy one. The character string A$ (which
might have come in directly from the keyboard) is sent to
DEBUG:

168 FOR L=1 TO LEN(AS)

110 v=128+ASC(MIDS$(AS,L,1))
1289 GOSUB 19

138 NEXT

148 RETURN

Line 110 sets bit 7 of A$ high, as required by DEBUG.

This 6502 program is loaded into Apple memory (at $360) when
you boot the system disk.

Q-68.STARTUP PAGE @001

101 * (va7)

1020 *—m e
9EBD- 1930 HOOK .EQ $9EBD DOS PRINTER HOOK
0020~ 1040 INVBLK .EQ $20 INVERSE BLANK
@7F 7~ 1650 LOWRT .EQ $7F7 LO RIGHT CORNER
Cogo- 1060 KBDATA .EQ $C000@

Ccole- 1070 KBSTB .EQ $C010

1¢80 * MEMORY MOVE POINTERS
g@3C- 1090 SRCL .EQ $3C (MON:AlL)
203D~ 1100 SRCH .EQ $3D (MON:AlH)

@042~ 1116 DSTL .EQ $42 (MON:AA4L)
0843~ 1128 DSTH .EQ $43 (MON:A4H)

1136 * DEBUG START ADDRESSES
9084~ 1140 MGOAD .EQ $0084 ;DBUG ENTRY
3088~ 1150 RGOAD .EQ MGOAD+4 ;REMOTE
ga8Cc-~ 1160 CTBAD .EQ MGOAD+8 ;CTL-B ENTRY

1170 * e e e

1180 * FOUR ENTRY POINTS:

1198 *

1208 * $3¢0---DBUG COMMAND

1216 * $3@03-~--START DEBUG-REMOTE MODE

1220 * $39B-~-QON (START BD AND LEAVE)

1230 * $3C2---TURN BOARD OFF

1240 * e e

1250 * THE LOCATIONS TURNON+l, INTR+1

1260 * AND STOP+1 ARE SET FOR

1270 * SLOT #4 OPERATION. TO SET A

1280 * A DIFFERENT SLOT, THE USER

1290 * SELECTS ITEM (1) FROM THE

1336 * SYSTEM STARTUP MENU. THIS

1348 * CHANGES THE BYTES IN THE

13590 * "BIT" INSTRUCTIONS TO REFLECT

1366 * THE PROPER SLOT. THEN THIS

1376 * PROGRAM (Q-68.STARTUP.BIN) IS

1380 * SAVED BACK ON DISK

1390 % e

1400 .OR $300

1410 * e e e e el
¢300- 4C OF 03 1420 BEG JMP MGO

1430 e e e e
@303~ 28 2C 93 144¢ RGO JSR INSTAL ;PUT IN MGO VEC
#3096~ A9 88 145¢ LDA #RGOAD ;ALTER ONE BYTE

03¢8- 8D @7 08 14649 STA $8¢7 ;TURN ON &EXIT

147¢ *
@30B- 2C C1l C@ 1480 TURNON BIT S$C8C1l ;QON ENTRY PT
030E- 60 14990 RTS
1500 * e e e e
@30F- 20 2C 93 1518 MGO JSR INSTAL ;RESET VEC'S
@312~ 20 @B @3 152@ JSR TURNON
1530 *
1540 * e e
155¢ * MAIN CONTROL LOOP
1560 * LOOK FOR ASTERISK IN BOTTOM
1578 * RIGHT CORNER OF SCREEN
1580 * AND FOR CTL-B FROM KEYBOARD
1590 * e e
@315- AD F7 @7 1660 LOOP LDA $7F7
#318- C9 AA 1610 CMP #SAA
#31A- DO @3 1620 BNE .1 ;NO "*" YET
#31C- 20 58 @3 1630 JSR PRTSCR
@31F- AD @00 CO 164¢ .1 LDA KBDATA
3322~ C9 82 1650 CMP #$82 ;CTL-B?
9324~ D@ EF 1660 BNE LOOP ; NOPE
9326~ 20 40 03 1679 JSR INTER
@329- 4C 15 @3 1680 JMP LOOP
1690 * e e e

17¢@ * INSTALL STARTUP VECTORS
1716 * SSP AT $188¢0
17286 * PC AT $100XX (XX FROM #MGOAD)

1730 * e e e
832C- A@ @7 1748 INSTAL LDY #7
@32E- B9 38 93 1750 .1 LDA RVEC,Y
@331- 99 00 08 1760 STA $8¢40,Y
@334~ 88 1770 DEY
#335- 10 F7 1780 BPL .1
@337- 640 1790 RTS
1809 *
9338~ 00 181@¢ RVEC .DA #S@@ SSP:@0 @¢1 88 00
9339~ 91 1820 .DA #$01
@33A~- 86 1830 .DA #$88
g33B- 00 1849 .DA #3500
1859 *
g33C- 090 18640 .DA #$0@0 PC: @@ 41 MGOAD
@33D- @1 187@ .DA #$01
@33E- 00 1880 .DA /MGOAD
@33F- 24 1890 .DA #MGOAD
1900 *

1910 * NOTE--INTER AND PRTSCR ARE
1920 * WRITTEN AS SUBROUTINES SO THAT
1936 * THEY MAY BE CALLED FROM BASIC
1949 * IN THE REMOTE MODE

1959 *

9340~
2343~
0345~
9348~
934a-
@34D~
2350~
@351~

#354-
@357-

9366
3368~
@36A~
@36B~
@36D~
@36F~
g371~
9372~

2C
60

C3

3C
42

F9

43

F2

ce

a8

@8
98

28

ca

CTL-B WAS HIT. INSTALL AUTOVEC
#7 AND INTERRUPT THE Q-68 BD

87C 87D 87E 87F
4@ @1 @8 NN (FROM CTBAD)
INTER BIT KBSTB ;CLEAR KB STB
LDX #CTBAD
STX $87F
LDX #0
STX $87C
STX $87E

BIT $C@C3 <ALTERABLE INSTR

RTS
* PRINT THE SCREEN. FIRST,
* MOVE SCREEN FROM $@400-S@7FF

TO $@COO-SOFFF

PRTSCR LDY #4

STY SRCL

STY DSTL

LDX #S$04

STX SRCH

LDA #S6C

STA DSTH
* BY A FORTUITOUS COINCIDENCE,
* X=4 AND Y=@, WHICH IS NEEDED
* FOR THE NEXT CODE SECTION

MOVE LDA (SRCL),Y
STA (DSTL),Y
INY
BNE MOVE
INC SRCH
INC DSTH
DEX
BNE MOVE

* CALC. SRCL-H FOR NEXT LINE

@374~ 8A 2460 NULINE TXA

@375- AQ 00 2470 LDY #8 ;CHAR. COUNTER
#377- 4a 2480 LSR
8378~ 29 93 2490 AND #503
#37A- 89 oC 25049 ORA #50C
#37C- 85 3D 2510 STA SRCH
937E- 8A 2520 TXA
#37F- 29 18 2530 AND #518
¢381- 99 02 2540 BCC .1
#6383~ 69 7F 2550 ADC #$7F
@385- 85 3C 2560 .1 STA SRCL
@387~ @A 2570 ASL
9388- oA 2580 ASL
@389- 95 3C 2590 _ORA SRCL
#38B- 85 3C 2600 STA SRCL
3
2620 * GET NEXT CHARACTER IN LINE
Y 1
938D- Bl 3C 2640 INLINE LDA (SRCL),Y
P11 O
2664 * TRANSLATE SCREEN CODE TO ASCII
2670 *
2688 * @-1F----40-5F
2690 * 20-———-—- 2A (INV BLK TO *)
2706 * 21-7F---21-7F
2716 * 80-FF---MASKED TO @-7F AFTER
27208 * INVERSE BLANK CHECK
2738 * oo
#38F- C9 20 2740 CMP #INVBLK
@391- FO OB 2758 BEQ AST
9393~ 29 7F 2760 AND #$7F
#395- C9 20 2776 CMP #$20 A-20
@397~ 10 @7 2780 BPL PRINT A>=20
@399- 18 2798 CLC A<20
@39A- 69 40 2800 ADC #540
@39C- 99 02 2810 BCC PRINT
@39E- A9 2A 282¢ AST LDA #'*
@3A0- 20 BD 9E 283@ PRINT JSR HOOK
#3A3- C8 2840 INY
@3a4- Co 28 2858 CPY #40
@36~ D@ ES 2860 BNE INLINE
2870 * oo oo e e
2880 * END OF THE LINE
2898 * oo
@3A8- A9 @D 2900 LDA #13 ;CR
@3AA- 20 BD 9E 2910 JSR HOOK
@3AD- ES8 2928 NEXT INX ;BUMP LINE COUNTER
@3AE- E@ 18 2930 CPX #24
@3B0- DO C2 2940 BNE NULINE
2950 F e

296¢ * FINISHED. NOW REMOVE *
*

2970 * e e
@3B2- A9 20 298¢ LDA #INVBLK
@3B4~ 8D F7 07 2990 STA LOWRT
3000 *mm e e e
3010 * AND PRINT THE CARRIAGE RETURNS
3020 ¥ e e
03B7- A2 @9 30309 LDX #9
@3B9- A9 @D 30490 .4 LDA #13 iCR
03BB- 20 BD 9E 3050 JSR HOOK
03BE- CA 3060 DEX
03BF~- D@ F8 3070 BNE .4
3080 * e
3090 * AND RESUME WAITING
3100 * e e e
@3Cl- 60 311¢ RTS
3129 *
3130 * e e
3140 * TURN OFF THE Q-68 BOARD
3150 M e
@#3C2- 2C C@ C@ 3164 STOP BIT $COC@ ;SLOT #4
@3C5- 60 317¢@ RTS
3180 *
gace- 3190 ZLEN .EQ *-BEG

D-10

This BASIC program is loaded and run when you start up the
QPAK-68 system.

56 REM ~-QPACK.STARTUP

109 D$ = CHRS (4)

11¢ PRINT DS$;"BLOAD Q-68,STARTUP .BIN"

120 v = (PEEK (780) =~ 129) / 16

149 TEXT : HOME : GOSUB 460

164 HTAB 5: PRINT " QPAK~68 STARTUP PROGRAM"

176 GOSUB 46@: HTAB 5: PRINT "Q-68 BOARD SHOULD BE IN SLOT # ";V:
GOSUB 469

HTAB 1: PRINT "YOUR CHOICE?....";

380 GET AS:A = VAL (A$): IF A < 1 OR A > 6 THEN 350

184 PRINT
220 PRINT : PRINT "1l....SET Q-68 BOARD SLOT"
23¢ PRINT : PRINT "2....START Q-68 DEBUG"
28¢ PRINT : PRINT "3....RUN ASSEM. AT $3000 (NO LANG.CARD)
310 PRINT : PRINT "4....RUN ASSEM. AT $D@@@ (L.C. OR IIE)
34¢ PRINT : PRINT "5....EXIT TO BASIC"
350 VTAB 20:
tA
400 PRINT A: IF A = 1 THEN 628
41¢ IF A = 2 THEN CALL 768
420 IF A = 3 THEN PRINT D$;"BRUN ASM.MB"
430 IF A = 4 THEN VTAB 24: POKE 34,23: PRINT CHRS$ (4);"EXEC
QLOAD.LCASM": END

432 IF A = 6 THEN PRINT D$;"BRUN ASM.MB.40400"

44¢ PRINT " (FOR ANOTHER CHANCE, TYPE "; CHRS (34);"RUN"; CHRS

(34);") "

45¢ END

460 FOR J = @ TO 39: PRINT "-"; :NEXT

470 RETURN

620 ONERR GOTO 810

630 TEXT : HOME : PRINT "QPAK-68 CONFIGURE PROGRAM": PRINT "
"

648 PRINT : PRINT

650 PRINT "Q-68 CARD IN WHICH SLOT?...";

654 HTAB 28: VTAB 5

660 GET AS:A = VAL (A$): IF A < 1 OR A > 7 THEN 654

678 PRINT A

680 PRINT : PRINT : PRINT "UPDATING FILE

--Q68.STARTUP .BIN-- "

700 Vv = A * 16 + 129

71¢ POKE 78@,V: POKE 853,V + 2

712 POKE 963,V - 1

738 PRINT CHR$ (4);"BSAVE Q-68.STARTUP.BIN,AS$300,LSCF"

768 GOTO 120

810 INVERSE

82@ PRINT : PRINT : PRINT "THIS DISKETTE DOES NOT CONTAIN

THE FILE --Q-68.STARTUP.BIN--"

830 NORMAL

84¢ PRINT CHRS$ (7): PRINT CHR$(7)

850 PRINT "PLEASE REPLACE THE DISKETTE WITH"
860 PRINT "ONE THAT DOES, AND TRY AGAIN"

87¢ PRINT : PRINT " (HIT ANY KEY TO RESUME...)": GET ZS$:
GOTO 620

Appendix E -- Things That Could Go Wrong

In a system as complex as the QPAK-68/Apple II combination,
there are a few things that could go wrong. This appendix
collects as many as we know about., As a registered QPAK-68
owner, you will receive mailings that update this section
(not too extensively, we hope).

BASIC BEHAVES ERRATICALLY

You probably started BASIC the normal way, by booting an
Apple system disk. One of the purposes of the QPAK-68 disk
boot is to move the BASIC text storage out of the 68008
exception vector memory space starting at $0804.

If you wish to use BASIC with the Q-68 board (for example a
REMOTE mode program), be sure to boot the QPAK-68 system
disk, and select item 5 (Exit to BASIC).

THE DISK DOESN'T WORK (I/0O ERROR)

Your Q-68 board is running. Turn it off by pressing RESET.

Apple saved 75 cents by not including a track @ switch in
their disk drive. Normal disk drives send head motion
pulses to the drive until the track @ switch closes, and
then the computer knows that the head is at the "home"
position.

Since the Apple disk drive does not have this switch, the
only way to insure that the head is homed is to give it the
maximum number of step pulses that would home the head from
the furthest-out position. This is the clatter you hear
when the disk boots or tries to recover from an error. It
is the head assembly rattling against the "home" position.

I1f the clatter is slower than usual, and then a disk error
message appears, your Q-68 board is probably running. The
6502 in the Apple must be running at full speed to perform
successful disk accesses. This means that the Q-68 board

must be off.

The easiest way to make this mistake is to be in the middle
of a DEBUG session, and try to load a disk file.

Recovery is easy: RESET the Apple, taking you back to the
assembler (":" prompt), and then use the disk.

APPLE GOES COMPLETELY DEAD

Did you put something into Apple page @ memory? You can do
this by writing locations $0@800@-S@08FF in your 68000
program. This will mess up the Apple for sure.

So will writing Apple locations $3D@-$S3FF (68008 SBOG-BFF).
The vital pointers which control such things as where the
Apple goes when you press RESET are in this area of memory.

NOTHING HAPPENS WHEN I TYPE "QON" FROM THE ASSEMBLER

Your 68000 program does not have the required vectors for
the 68008 startup operation. You need to put two addresses
at Apple locations $8@0-$807 which correspond to the initial
system stack pointer, and 68000 start address,

respectively, For example:

.OR $800 ;68008 location 00000
.DA $1889¢0 ;SSP)
.DA $1000 ;680008 program start

TYPING "DBUG" FROM THE ASSEMBLER DOES NOT WORK

The "Q-68.STARTUP.BIN" program is not in Apple memory at
$304.

Note: If you type “DBUG", your 68098 program does not need
the RESET vectors described above. The "(Q-68.STARTUP.BIN"

program installs the RESET vectors for you. These vectors

are set to start the Q-68 board running DEBUG.

(If your program does install the vectors, they will
override those installed by the startup program. Your new
ones will be installed when your program is assembled.)

The easiest way to make sure the startup program is in
memory is to reboot the system (CTL-OpenApple-RESET on the
Ile). This automatically installs the startup program.

If you wish to load the startup program without losing
results in progress, from the assembler (":" prompt) type
MNTR. Then, from the Apple monitor ("*" prompt) type "BLOAD
Q-68.STARTUP.BIN". Make sure the Q-68 board is off for this
operation. You can insure this by hitting RESET before
typing "MNTR".

I CAN'T PASS CHARACTERS TO DEBUG IN THE REMOTE MODE

Remember to set the MSB of all data sent to DEBUG. Also, if
you are sending a bunch of characters in a quick succession,
you need to check the MSB of the sending location (Apple
SFE) for MSB low before sending each character. This
insures that DEBUG won't miss any characters.

THE DEBUG "CTL-D" COMMAND DOESN'T WORK

Is your printer card enabled? This is done by typing "PR#n"
where "n" is the slot number which your printer card
occupies.

You can type this either from BASIC (if you have selected
item 5 from the startup menu), or directly from the
editor/assembler ":" prompt.

Is the Q-68.STARTUP.BIN program in memory? This program
scans the DEBUG screen looking for the signal to print the
screen (as asterisk in the lower right corner), and then
does the actual screen printing.

Again, you can install this program from the editor prompt
(":") by typing MNTR, then "BLOAD Q-68.STARTUP.BIN".

The 6502 listing for this program is included in Appendix D.
If you have some special printer interface card problem and
have an Apple (65@2) editor/assembler (we recommend the S-C

one), you can use this listing to serve as a guide to write
your own printer driver.

CAUTIONS

Here are some general cautions which "beta-site" (first
test) users brought to our attention:

1.

Be careful not to let your 68006@¢ code clobber the memory
at $80@@¢-$BFF, which is Apple memory $@-$7FF.

Don't do Apple DOS commands while the Q-68 is using
Apple memory. The disk I/0 is carefully timed by the
Apple's 65082 processor. If the Q-68 board is slowing
down the 6502 during attempted disk reads, you will get
I1/0 errors. During disk write operations, you could
clobber data on the disk.

Never work on the board (as in Chapter 5) without first
turning off power to the Apple II.

Stay clear of Apple memory from $3¢9-$3CF. This memory
contains the "Q-68.STARTUP.BIN" program, which must be
intact to allow correct operation of the QON and DBUG
assembler commands, and the CTRL-D and CTRL-B DEBUG
commands.

Chapter 7 - HARDWARE TOPICS

Section 7.1 -- EXCEPTIONS

Question: How many programmers does it take to change a
light bulb?

Answer: None. It's a hardware problem.

Have you ever been in the middle of a microprocessor project
where something didn't work, and the software and hardware
people just pointed at each other, each insisting that the
problem was caused by the other group?

This is very common, A microcomputer based system is a very
complex animal, and it is sometimes very difficult to
exclusively place the blame on either hardware or software.

Motorola has equipped the 680086 with an elegant mechanism,
called "exceptions", which stops program execution when
something abnormal happens, and lets you poke around to find
out what went wrong.

You hardware types can present irrefutable evidence to the
software team that somebody tried to access a long word at
an odd address. And you software types can prove once and
for all that register A4 never exceeded S$E@@0#, and thus
the glitches in video memory were caused by hardware.

Catching programming errors is only one of the many things
the 68000 exception system can do.

There are five types of exceptions:

1. Exceptions caused by outside stimulation (RESET,
Interrupts)

2. Exceptions caused by bugs in the program (Address Error,
Illegal Instruction, Divide by Zero, Privilege
Violation).

3. Exceptions caused by program instructions (TRAP, CHECKV,
CHK) .

4, Exceptions caused by a system malfunction (Bus Error,
Spurious Interrupt).

5. Exceptions which allow system testing (TRACE).

All exceptions, no matter what the cause, are handled the
same way by the 680¢@8. "Normal" processing, where the
program executes exactly as you wrote it, is suspended, and
a special three-step exception sequence is started.

First, the 6800@ state is saved, so that you can find out
exactly where in memory the exception happened. Or, in the
case of an interrupt, so that you can resume where you left
off after finishing the interrupt processing.

Second, the 680080 reads a 32-bit address out of a special
area of memory. This address is called an "exception
vector"™ (a vector is something which points; in this case
the address points to a subroutine).

Third, the 68000 jumps to this address.

By processing the exception, the 68800 diverts program
execution away from the running program, to a special
routine which you have written to handle the exception.

How does the 68808 know which exception occured, and
therefore which particular vector to use?

At the bottom of the 6806080 memory map (at $00000¢) is a one
kilobyte table of exception vectors. Take a look at page 61
of the Motorola 68808 User's Manual, Here you'll see the
complete vector table. Rather than duplicating the
descriptions found in the Motorola manual, we'll concentrate
on the vectors actually used by the QPAK-68 system.

THE RESET VECTOR

The first two vectors are for handling 686¢8 startup. When
a 68000 system is powered up, the RESET line is typically
held asserted for a brief time until the other circuits in
the system can power up and stabilize. Then RESET is
released.

The 68908 then automatically fetches the first eight bytes
in memory. The first four constitute an initial System
Stack Pointer value. This 32-bit value is loaded into the

SSP. The next four bytes constitute a program start
address. This 32-bit value is loaded into the Program
Counter (PC). The 68000 then jumps to this initial PC
address.

The RESET vector is the only 8-byte vector in the table.
All the others are 4-bytes, representing 32-bit addresses.
It is up to the system designer to make sure that valid
information exists at the first 8 bytes of 68808 memory.
When you run the QPAK-68 system, the RESET vectors can be
set up two ways:

1. When you start the system with the QPAK-68 system disk,
the reset vectors are automatically set up to start up
the DEBUG program in the Q-68 board EPROM. The first
eight bytes (which start at $800¢ in Apple II memory)
are:

9% 01 88 00 08 @1 00 84

This places the System Stack Pointer for your program at
the top of Q-68 board RAM ($18800), and begins 68008
operation at the beginning of DEBUG ($106@¢84), NOTE:

The SSP for DEBUG is set to $186@00. It won't interfere
with your program's SSP at $18¢00.

2, The assembler can place the eight bytes at $806 (using
two ".DA" statements), and thus start itself with SSP
and PC values that you choose. Once you write these
numbers to $80¢-$8067, you turn the Q-68 board on with
the assembler's "QON"™ command. <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>